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Abstract

In the face of COVID-19, the federal government scrambled to provide emergency funding
to businesses, but did not always take into account the heterogeneous nature of firms, especially
within industries. Using the lodging industry as the application, this article shows that busi-
nesses’ failure risk in a pandemic depends on a business’native ability to adapt to changing
safety needs, in particular its ability to provide a socially-distanced environment. Hotels not
well suited to social distancing —e.g. destination-type hotels with large gathering spaces and
many personalized services —offered deeper price discounts or closed down altogether during the
pandemic. Simpler hotels with fewer ancillary services were more likely to remain open, with
a substantial proportion actually increasing prices. Area infection rates mattered little. Effects
are identified by comparing pre-pandemic expectations of outcomes to updated within-pandemic
expectations of outcomes, all while holding the place and the time of consumption fixed.
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1 Introduction

The collapse of the U.S. economy triggered by the COVID-19 coronavirus in March 2020 was less of

an economic meltdown and more of an economic flash fire. In the eight week period from mid-March

to mid-May, 36.2 million Americans applied for unemployment benefits and the U6 underemploy-

ment rate briefly skyrocketed to 22.8%, approaching Great Depression era numbers (DOL (2020),

BLS (2020)). Stay-at-home orders were issued, non-essential businesses were shuttered, and even

essential businesses remaining open saw a collapse in demand of a scale and speed not previously
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imagined. In March and April especially, federal and state governments scrambled to provide emer-

gency financial support to businesses and citizens through a variety of programs, including liquidity

loans for banks, loans to large businesses in selected industries, loans to small businesses such as

Paycheck Protection Program loans (PPP) and Economic Injury Disaster Loans (EIDL), stimulus

checks to persons below certain income cutoffs, and enhanced employment benefits to the recently

laid off.

Not surprisingly given the speed at which programs were drawn up, the relief did not always

go to where it was most needed. Consider the PPP program. The initial window to apply for

loans closed quickly and many small businesses were shut out of assistance altogether (Humphries

et al. (2020)). Rules changed by the day, making repayment risks diffi cult to gauge, and even a

slight hesitation by a small business owner could leave him or her behind. Meanwhile, news reports

began to surface about large corporations and other large entities receiving hundreds of millions of

dollars under the program, arguably without the same need, and only by virtue of getting in line

first (Bartik et al. (2020)). Distribution of funds and vetting of recipients was arguably less than

ideal as the government rushed to attack a very large problem with very large amounts of money

very quickly.

In this article, I examine how a more carefully planned federal pandemic response could better

target emergency funds to those businesses with the greatest actual need. Obviously, smaller

businesses often have a greater insolvency risk and larger businesses often have larger numbers of

employees at risk, and these are important, but there is much more to it. And it is this "much

more" that has not always been taken into account. Businesses will generally be hurt, but not

always uniformly, and not always in strict proportion to their size, even within the same industry.

I focus on one important and often-overlooked factor that affects relative failure risk — "na-

tive adaptability". Native adaptability is a business’ ability, or inability, to easily and quickly

adapt to safer health practices in a pandemic —mostly notably, its ability to create or maintain

an environment conducive to social distancing among their customers. I use the term "native"

because businesses were generally not set up with a pandemic in mind, and were faced with a set

of largely pre-determined product and service characteristics that may or may not align very well

with changing public safety needs in a pandemic. Greater native adaptability means that it is easier
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for a business to implement pandemic-safe health practices, such as requiring masks or ensuring

greater social distancing between consumers, and lower native adaptability means it is inherently

less easy to do so. Online businesses, for example, have a high degree of native adaptability because

in-person interaction tends to be minimal in these businesses. Conference centers and nightclubs

have a much lower degree of native adaptability because their business model relies on patrons

being in close contact with one another, and this is harder to change. Restaurants and gyms have

lower native adaptability because they are not as amenable to mask-wearing, whereas retail shops

have more native adaptability because mask-wearing is easier to implement. While small changes

can be made around the edges to improve safety, the fundamental nature of a business limits how

much they can ultimately adapt, and this inherent degree of native adaptability directly affects

relative failure risk in a pandemic.

Native adaptability to changing safety needs in a pandemic has received little attention in the

federal response, so it makes sense to have a dialogue here. Federal programs often distinguish

between industries as a whole, but rarely distinguish between similarly-sized businesses within the

same industry. The latter omission is important because businesses within the same industry tend

to be heterogeneous and will generally experience different degrees of failure risk. For example, a

hotel with small rooms but large communal spaces (fancy lobbies, a conference center, or resort-

style pool areas where patrons would normally gather) would fare differently in a pandemic than a

similarly-priced hotel focused on large and fancy rooms but minimal common spaces. The former

is more set up for group interaction, the latter is more set up for individual privacy. Since the

native adaptability of these businesses differ, their demand losses should differ and their failure

risks should differ as well. If federal programs fail to distinguish among firms with different degrees

of native adaptability and failure risk in targeting funds, the marginal value of the last dollar spent

on each business would not be equal, leading to an obvious deadweight loss. The overall outcome

could be improved by redistributing emergency funds from lower risk to higher risk businesses and

increasing the "bang for the buck" on public dollars. Said another way, taking into account native

adaptability, a necessarily microeconomic exercise, has important macroeconomic consequences for

recovery.

To highlight the issues, I explore native adaptability in the context of one particularly hard-hit
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industry, the hotel and lodging industry. The industry is an excellent laboratory for studying native

adaptability for a variety of reasons. First, businesses can differ significantly in native adaptability.

Hotels are highly heterogeneous, from simple roadside motels to luxury vacation resorts and all

varieties of accommodations in between. While some are highly amenable to social distancing

(such as simple hotels that largely cater to pass-through highway traffi c), others are not (such as

hotels with resort-style pools, restaurants, and conference centers that may be destinations in their

own right). Second, the hotel industry was deemed an essential industry and individual hotels were

not required to close by health authorities.1 Hotels were able to compete for whatever residual

consumers remained during the pandemic, and closure decisions were made by the individual hotel

franchisees and not the health authority. Third, and as is well known, hotels were among the

hardest hit of businesses not otherwise forced to close. Hotel occupancy rates collapsed to an all-

time record low of 21.6% in mid-April 2020 (STR (2020)), before rebounding in early May when

state economies began to reopen (Fairlie (2020)).

Another advantage of using the hotel industry as the application is practical. The industry

allows for an exceptionally clean identification of effects because it offers a control for what would

have happened after the start of the pandemic but in the absence of the pandemic. This is rare for

most consumer product industries. The industry operates on an advance purchase model, where

one can reserve a hotel room for a future stay (assuming the hotel is to be open) at a current price

that fluctuates over time leading up to the stay, based on then-current demand expectations. It

is akin to a futures market, but for heterogeneous consumer goods rather than commodities. It

makes it possible to peer into the future to see whether a hotel expected to be open, and what prices

it expected to get, for a stay occuring after the start of the pandemic, but as those expectations

were formed before there was any thought of a pandemic. I can then compare those pre-pandemic

expectations to the hotel’s updated expectations on closures and prices, all for the same stay date,

but this time after the pandemic arrived and after travel demand had collapsed. In other words, I

can compare pre-pandemic and within-pandemic expectations of closures and prices, holding both

the product (hotel and room) and the exact timing of consumption (the date of stay) all fixed. It

1 In very few cases, hotels were limited to housing essential travelers only, but the definition of essential travel
tended to be broad and proof of essential travel was neither checked nor required.
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is unusually well identified.

A review of the COVID-19 literature shows that empirical analyses are often of the before-

and-after variety, comparing observed outcomes from before the start of the pandemic to observed

outcomes after. While it may be hard to argue that the pandemic was not a major cause of

economic woes starting in late March 2020, simple before-and-after exercises can be infected by

unobserved time-varying correlates. Unobserved time-variant factors correlated with the timing

of the pandemic can get mixed up in the estimates of interest and bias results. In general, it is

diffi cult to find a control for what would have happened in the post-pandemic world in the absence

of a pandemic (such is the nature of pandemics), but the advance purchase model in hotel industry

offers such a peek.

Using operations data from a large dataset of over five thousand hotel franchisees, I explore

how heterogeneous degrees of native adaptability differentially affect relative demand outcomes. I

examine two important outcomes in particular —the decision of whether to remain open or close,

and the decision of what price to charge if remaining open.2 I pay special attention to a hotel’s

native adaptability —in particular, its amenability to social distancing —both inside the hotel and

in the surrounding areas where guests would typically go (and why guests might choose the hotel

in the first place). One such external factor is local area COVID-19 infection and death rates.

The analysis focuses on stays in April 2020 in the immediate aftermath of the demand collapse.

It is an ideal time frame to study the heterogeneous effects of native adaptability. States had largely

shut down their economies by late March, and unemployment rates peaked in mid-April.3 Hotel

demand was at its lowest in April with occupancy rates bottoming out at record levels. Consumers

had less compassion fatigue at that time and were likely to be more particular and wary when

choosing activities and businesses. Come May, things began to improve from an economics point

of view, if not from a public health point of view. The vast majority of states lifted stay-at-home

orders in the final days of April and the first two weeks of May, and began reopening their economies

2A third and related outcome variable would be hotel occupancy rates, conditional on a hotel remaining open.
Unfortunately, occupancy rates at the hotel level, necessary for the types of comparisons made here, are not publically
available. I do, however, use aggregate-level hotel occupancy data to bound the overall impacts of the pandemic on
hotel profits.

3Record unemployment numbers released by the Bureau of Labor Statistics and offi cially attributed to May 2020,
are based on a workplace survey conducted the week of April 12-18, 2020.
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again. Travel picked up and occupancy rates rebounded some. By August, hotels had reversed

more than half of their occupancy rate losses.4

To preview results, I find that the native adaptability of a business matters for relative demand

loss and failure risk. The likelihood of closure and the extent of price discounting was highest for

hotels where social distancing was inherently more diffi cult, and lowest for hotels where social dis-

tancing was inherently easier. A meaningful percentage of the latter group were even able to raise

prices during the pandemic. This interesting result can be attributed to the better native adapt-

ability of these hotels causing a shift in the elasticity of the residual consumer. Area characteristics,

including COVID-19 infection and death rates, show surprisingly little effect.

The remainder of this article is organized as follows. Section 2 discusses the ever-growing

COVID-19 literature and provides some additional background. Section 3 describes the data.

Section 4 outlines the methodology and Section 5 presents the empirical results. Section 6 concludes.

2 Background and Literature

The novel coronavirus COVID-19 caused a sudden and historic shutdown of the U.S. economy

starting in late March 2020. Chinese offi cials first reported a contagious flu-like illness in Wuhan,

China, to the Chinese offi ce of the World Health Organization, on December 31st, 2019 (WHO

(2020)). The U.S. was notified on January 3, 2020, and news of the illness began to slowly spread

over the next few weeks. WHO reported the first known case outside of China on January 15th,

and the U.S. Centers for Disease Control and Prevention reported the first known case in the U.S.

on January 20th (WHO (2020), Holshue et al. (2020)). At the end of February, there were nineteen

known cases in the U.S.. By the end of May, there were more than 1.5 million U.S. cases and over

100,000 deaths. By the end of September, over 7 million cases and 200,000 deaths. By the following

March, over 30 million cases and 550,000 deaths.

The first tangible indication of stress on the U.S. economy came the week of February 24th,

when the stock market began a significant period of volatility (Baker et al. (2020a)). It was

triggered in part by news of community spread and a prediction from the director of the National

4August occupancy rates were 49%, approximately 22 percentage points below typical August rates, compared
with April occupancy rates of 21%, approximately 45 percentage points below typical April rates.
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Center for Immunization and Respiratory Diseases that it would not be a question of ‘if’the virus

would spread, but how many Americans would be severely affected when it did (CNN (2020)).

The virus spread quickly and, by mid-March, state governments began closing down large parts of

the economy. By the end of May, forty million Americans had applied for unemployment benefits

(DOL (2020)).

There is an ever-growing economic literature that examines the economic impacts of COVID-

19 on a wide variety of outcomes. Macroeconomic efforts include studies of economic uncertainty

(Baker et al. (2020a), Altig et al. (2020)), aggregate consumption and GDP (Chen et al. (2020), del

Rio-Chanona (2020), Auray et al. (2020)), stock prices (Baker et al. (2020b), Alfaro et al. (2020))

and recovery scenarios with and without government intervention (Eichenbaum et al. (2020), Stock

(2020), Atkeson (2020), Barro et al. (2020), McKibbin & Fernando (2020)), Guerrieri et al. (2020)).

Labor studies examine a variety of COVID-induced labor market outcomes (Coibion et al. (2020),

Baek et al. (2020), Forsythe et al. (2020)), including side effects from working from home (Hsu &

Henke (2021)), increased togetherness (Hamermesh (2020)), effects on race (Kantamneni (2020)),

and effects across countries (Adams-Prassl et al. (2020)). School closure effects is a common theme,

with researchers evaluating both the effects of the pandemic on students and their parents (Croda &

Grossbard (2021), Bansak & Starr (2021)). Policy papers examine the effect of specific government

policies to curb the spread of COVID-19, from lockdown orders (Song et al. (2021)) to targeted

closures (Spiegel & Tookes (2020)) to mask requirements (Chernozhukov et al. (2021)).

Numerous studies examine the effects of the pandemic on industries as a whole. Bloom et

al. (2021), Fairlie & Fossen (2021) and Alekseev (2020), like many others, show that businesses

were hurt by the pandemic overall, and that it varied substantially across industries, with off-line

industries hurting the most. Davis et al. (2020) use stock market returns to show that businesses

related to travel, retail, and energy had the largest demand drops, and Gourinchas (2020) finds

a similar set of highly affected industries across countries. Barrero et al. (2020) argue that the

pandemic is also a reallocation shock, changing long-run demand for certain types of businesses,

e.g. online businesses.

The hotel industry, the subject of this study, was hit particularly hard by the pandemic (Fairlie

& Fossen (2021), Campos-Vazquez & Esquivel (2021)). While hotels themselves were not forced
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to close, many of the complementary services offered within the hotel (e.g. dine-in restaurants,

conference meeting spaces, casino floor, etc.) and area attractions that consumers might want to

travel for in the first place (e.g. beaches, theme parks, theatre) were. These closures, combined with

increased safety risks of travel, led consumers to travel less and to avoid less safe travel situations

when they did (Lagos (2020)).5

In this article, I want to examine the role that native adaptability plays within an industry,

within the hotel industry in particular, rather than just across industries as a whole. In other

words, I am not interested in how overall demand changed in the hotel industry (it fell a lot), but

rather in how relative demand changed across hotels, i.e. how residual demand got redistributed

during the pandemic, and why.

Since governments did not pick and choose which hotels could stay open and which must close

(hotels were allowed to remain open), government restrictions did not directly determine which

hotels would and would not be available to the now-fewer consumers still able to travel. But

government restrictions did affect relative demand through its closures of complementary services

and attractions, inside and outside the hotel. Complementary services and nearby area attractions

are important factors for hotel demand in normal times, at least for many hotels. For example,

a hotel with a nice dine-in restaurant and located close to Disneyland, popular in normal times,

will become much less attractive to a traveler when the restaurant and Disneyland itself are closed

by government restriction (or if consumers just did not feel safe using them). In contrast, a hotel

without a restaurant and not near a major attraction is unlikely to be adversely affected in the

same way. Demand may still be down overall, but relative demand loss should be higher in the

former case.

For the purposes of this study, it does not actually matter whether government, consumers,

or consumers under the advice of government are the ones picking and choosing which hotels

consumers will stay at, conditional on traveling. I am interested in why certain hotels are picked

and chosen over other hotels, and this is necessarily a question about hotel and area characteristics.

My hypothesis is that a hotel’s native adaptability to changing safety needs in the pandemic is

5Sharma et al. (2021) discuss some of the simpler safety protocols hotels were able to put in place, such as
plexiglass protectors, increased cleaning schedules, and mobile check-in kiosks.
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important for whether or not they are picked or chosen, and thus important for their idiosyncratic

failure risk.

Understanding native adaptability can help policymakers identify the most vulnerable firms

in a pandemic and improve the targeting of emergency funds. Bartik et al. (2020a) show that

targeting to date has been less than perfect — the businesses most likely to have received PPP

funding are simply those with stronger pre-existing bank relationships and not necessarily those

with the greatest need for assistance. Other factors matter for failure risk as well, such as firm size

and solvency, but native adaptability may be among the most overlooked. This article contributes

to the literature by showing that failure risks depend on native adaptability in an important way,

and that native adaptability differs substantially not just across industries but within industries as

well.

Given that the application is the hotel industry, my study naturally shares a common thread

with other hotel industry studies in the Industrial Organization and Management literatures, albeit

for more normal times. These include studies of hotel entry and exit (Mazzeo 2002, Enz et al.

(2008)) and hotel pricing (Abrate et al. (2012), Hung et al. (2010), Tappata & Cossa (2014),

Guo et al (2013), Koulayev (2014)) in particular. The study also has interesting parallels with the

pharmaceuticals literature and the crime literature, as discussed later.

3 Data

The relevant data falls into three categories, 1) hotel operations data, 2) hotel characteristics data,

and 3) area characteristics data. The hotel operations data and hotel characteristics data all derive

from a major international hotel franchisor that has approximately thirty hotel brands and over

five thousand hotels in its network in the United States. I collect detailed information on 5,253

hotels in total, representing a sizeable sample of 10% of all hotels operating in the U.S. As with

most major hotel companies, the company itself does not own or operate its branded hotels, but

simply leases its brand names and use of its central reservation system to individual franchisees. It

is the individual franchisees that own and operate the individual hotels. They pay a franchise fee

as a percentage of revenues and must meet brand quality standards, otherwise the franchisees are
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independent and solely responsible for their own daily operations, including pricing and opening

decisions.

The fact that the data derives from a single franchisor can give rise to representation concerns,

but it is important to keep in mind three caveats. First, the same franchisees often own multiple

hotels and contract with multiple franchisors, sometimes even switching hotels between franchisors

at contract expiry, so the franchisees within the dataset and those outside the dataset are often one

and the same. There is no reason to suspect franchisees would respond to the pandemic differently

with one particular franchisor than another. The physical hotels themselves are also generally

very similar, conditional on quality level, from one major franchisor to the next. Second, hotels

affi liated with the franchisor span essentially the entire quality spectrum in the industry, with the

only exception being at the very low end —the often single-story unbranded roadside motels, which

have been disappearing from the U.S. Aside from this, there are no gaps in quality coverage. Keep

in mind that the sample includes one in every ten hotels in the country, a substantial fraction of

the total. Third, and anecdotally, we see similar patterns in closures across hotels from franchisees

under all major hotel franchisors. There is no reason to suspect that native adaptability would be

very important for relative demand for one franchisor, such as a Hyatt, but not for another, such

as a Hilton, in producing patterns of response. Representation issues are unlikely to be a problem

in the context, but the potential concern is noted.

The hotel operations data contains two key dependent variables of interest - a hotel’s open/closed

status for each day in April 2020 and, if open, the hotel’s lowest available price on that day (for

a standard room through direct booking on the company’s website or phone reservations system).

Operations data was collected for January 2020 and July 2020 as well, in addition to April 2020,

for ancillary analyses discussed below.

Importantly, the operations data for each hotel for each stay date in the month of April 2020

was collected twice. It was first collected in the last week of December 2019 before the start of the

pandemic and before there was any inkling that a pandemic would soon be coming. It was collected

again in the last week of March 2020 after the pandemic hit U.S. shores and had collapsed hotel

demand in a dramatic fashion. The first snapshot shows which hotels were expecting to be open

in April 2020, and what prices they were expecting to get, as these expectations were formed in
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late December 2019. The second snapshot shows which hotels were still expecting to be open in

April 2020 and what prices they were now expecting to get, as these expectations were updated

in late March 2020. The difference in the snapshots represents the effect of the pandemic on hotel

closures and prices, holding both the product (the hotel) and the time of consumption (the April

date of the stay) fixed. Being able to hold fixed the time of consumption is unusual and leads to

an exceptionally well identified set of effects.

The data forms a three dimensional panel instead of the usual two - the first dimension being

the identity of the hotel, the second dimension being the date on which the given hotel stay in

April is to occur, and the third dimension being the pre-awareness-of-pandemic date or post-start-

of-pandemic date on which the open/closed status and price for a given hotel stay in April 2020

was recorded.

The hotel characteristics data contains the key independent variable of interest - a hotel’s

category rating. Category ratings are set by the franchisor (not the franchisee) and are used to

determine the redemption price, as measured in reward points, at which members of the franchisor’s

loyalty program can redeem reward points for free nights at the hotel. In more normal times,

the category rating reflects the overall popularity of a hotel, which is based on factors including

destination value and the level of services and personal attention it provides. During a pandemic,

however, it measures something potentially more problematic —decreased native adaptability, and

most notably a lower native adaptability to social distancing practices.

Higher category hotels tend to have larger and fancier lobbies, more ancillary on-site services

(e.g. pools, bars, restaurants and shops), and more personalized services (e.g. bellmen, valets, and

spa services) than lower category ones do. They tend to be busier, and are more likely to be located

in more popular business and tourist areas where crowds are common. They are often larger and

taller buildings that require elevators to access rooms. Generally considered higher quality hotels

for all these reasons in more normal times, the characteristics of higher category hotels are a liability

in a pandemic. They are less amenable to social distancing and, because of their full-service model,

rarely scale down well.

In contrast, lower category hotels tend to be simpler hotels, with fewer personal services and

fewer on-site staff, and fewer areas where guests congregate. They tend to be shorter buildings
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that offer ground floor rooms making elevators less necessary. They are less likely to be located in

a destination area and more likely to cater to pass-through traffi c along highways and interstates.

In fact, it is often possible to come and go from a low-category hotel, from vehicle to room to

vehicle, with minimal human contact. These features make lower category hotels more amenable

to social distancing that their higher category counterparts, and that can matter to consumers still

travelling in a pandemic.

There are eight categories in all. Category 1 and 2 hotels are simple hotels with small lobbies

and few services, usually located along highways outside of major cities and providing basic accom-

modations to largely drive-through overnight traffi c. Category 3 and 4 hotels are hotels with larger

lobbies and a wider array of services, often located in major cities and popular destination areas.

Category 5 and 6 hotels are large full-service hotels with upscale lobbies and numerous personalized

services, generally located in the most popular business and tourist destinations. Category 7 and

8 are the elite luxury resort hotels in the system, few in number, and located in the heart of major

metropolitan business districts and the most prestigious tourist vacation destinations around the

country.

In addition to the category rating, I collect brand and location information for each hotel, and

map each hotel to the county in which it is located, for later matching with area characteristics.

The area characteristics data includes county-level demographic information on population, as

reported the Census Bureau using 2015 estimates, and daily county-level information on COVID-19

infections and deaths as assembled by the New York Times from state health authorities. These

variables serve as area demand controls. Higher COVID-19 infections and deaths in a local area

measure exposure risk and are expected to depress hotel demand generally across area hotels. Pop-

ulation serves as a proxy for higher infection potential even conditional on actual infections, since

these are busier areas in general, and this should similarly depress demand. Area characteristics

are matched by county FIPS code to the hotels located in each county.

Because two of the three dimensions in the panel are time-based, it is important to consider the

appropriate time dimension for aligning time-varying COVID-19 infection and death rate data to

time-varying hotel operating data. I align infection and death rates to be contemporaneous with

the dates on which expectations of future open/closed status and future prices were then current
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(the third dimension of the data) rather than the dates the future stay would actually occur (the

second dimension of the data). The reason is that expectations about future open/closed status

and future prices should be based on information known at the time and not on ex-post realizations

of what ultimately occurs. In alternative specifications, I explore other types of infections forecasts,

including perfect foresight, and results do not meaningfully change.

4 Methodology

The methodology is based on the three-dimensional panel. With two snapshots of each hotel’s April

2020 price calendar taken at different times, once before the start of the pandemic and once after

the start of the pandemic, I can compare outcomes for a given hotel - not across different stay dates

- but for the exact same date in April 2020, once as price and closure expectations for April were

formed in late December 2019 prior to the start of the pandemic, and again as price and closure

expectations for April were updated in late March 2020 after the pandemic hit.

To avoid the double use of the word "expectations", I hereafter refer to late December 2019

expectations of April outcomes as "expectations" and late March 2020 expectations of April 2020

outcomes as "realizations". It is purely nomenclature and has no effect on results. The name

derives from the fact that April closure decisions were largely set in stone by late March, and even

April prices changed relatively little following the initial collapse in expectations in mid-March.

I do not mean to suggest that late March expectations of April closures and prices and "day-of"

April realizations of closures and prices are one and the same and they do they need to be. It

is the former (March expectations of April prices) that is the relevant outcome here, enabling me

to compare two identically-collected apples-to-apples snapshots of expected closures and prices for

upcoming April stays. The new nomenclature is only to simplify the discussion in the text.

The main analysis proceeds in two stages. I first estimate a series of closure regressions that

compare each hotel’s "expected" closure status for the month of April 2020 (as expected in Decem-

ber 2019) with its "realized" closure status for the month of April 2020 (as expected in late March

2020). Then I do the same for expected and realized prices.

With two time dimensions, the empirical strategy takes the familiar form of a natural experiment
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with treatment and controls, but with a twist. Specifically, it calculates 1) the difference between

realized April outcomes and realized January outcomes for a given hotel (i.e. the treatment group

receiving the pandemic treatment), and 2) the difference between expected April outcomes and

realized January outcomes for that same hotel (i.e. the control group receiving no pandemic

treatment). Because realized January outcomes appear on both sides and cancel out, this trivially

reduces to the difference between realized April outcomes (from the second snapshot) and expected

April outcomes (from the first snapshot), all for the same hotel and stay date. Interestingly, it is

no longer necessary to look for a separate group of hotels unaffected by the pandemic, as would

be the case in a typical natural experiment, because hotels’expectations of April 2020 demand, as

recorded in late December 2019, were all unaffected by the then-unknown COVID-19 pandemic. In

other words, each hotel is both in the treatment group and in the control group. It is like applying a

treatment to a subject and checking the response, then reversing back in time and giving a placebo

to the same subject and checking the response a second time. The advance purchase model in the

industry allows for this uniquely well-identified estimation framework, and it is a key advantage

over the usual kind of natural experiment involving separate subjects in the treatment and control

groups. There is no concern that the two groups may differ from each other in unobserved ways,

as they are one and the same. The identifying assumption is simply that hotels’seasonal demand

expectations based on current information are not systematically biased. I develop a test for this

later.

I estimate overall closure rates, and how these rates vary across a set of hotel and area charac-

teristics, including category ratings and local infection rates, with the following equation:

E(CLOSEDijrt | H,D, V,R,Θ) = G(αc + βcHijr + γcDijr + δcVijr + ρcRr

+φc(Rr ∗Hijr) + ψc(Rr ∗Dijr) + λc(Rr ∗ Vijr))

where CLOSEDijrt is a dichotomous variable equal to one if hotel i located in county j will be

closed at time t according to the hotel’s expectation at time r < t, where r is either late December

2019 or late March 2020, and time t is a date in April. The matrixH consists of hotel characteristics
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(in particular its category rating), the matrix D consists of area characteristics unrelated to the

pandemic (population), and the matrix V consists of local infection and death rates due to the

pandemic. The variable R is an indicator function equal to one for information current as of late

March 2020, and zero for information current as of December 2019. I call this variable REALIZED

in the tables for better readability. The Θ is shorthand for all model parameters. The data is

collapsed to the monthly level since all right side variables are month-of-stay-invariant except R.6

For partial month closures, I set CLOSED = 1 if a hotel reported to be closed on a majority of

days.7

The key variables of interest are the interaction terms, which show the effect of each explanatory

variable on the change in expected April closures from late December expectations ("expectations")

to late March expectations ("realizations"). As I am most interested in the effect of the pandemic

on closure rates across the different hotel category ratings, a complete set of hotel category rating

indicator variables are included in the H, except for the omitted category, Category 1. The inter-

action of a given hotel category rating variable h and the snapshot R measures the excess increase

in new April closures (from late December expectations to late March realizations) for hotels in

Category h, up and above the corresponding increase for Category 1.

In principle, the estimation framework begins as a difference-in-differences-in-differences spec-

ification —where I compare 1) the increase in closures between "realized" April outcomes (based

on the March snapshot) and "realized" January outcomes (based on the December snapshot),

for hotels in a given category, i.e. the with-pandemic treatment group, and 2) the increase in

closures between "expected" April outcomes (based on the December snapshot) and "realized"

January outcomes (again based on the December snapshot) for hotels in that same category, i.e.

the without-pandemic control group. I then compare this difference-in-differences estimate with

the corresponding difference-in-differences estimate for Category 1 hotels.

Since the "realized January outcomes" cancel out, in practice the analysis reduces to a more

typical difference-in-differences. Ultimately, I compare posted closures and prices for the same

6There will be two datapoints per hotel for the month of April, one for expected April closure (R = 0) and one
for realized April closure (R = 1).

7The vast majority of hotels either expected to remain open or remain closed for the entire month of April. Using
a percentage closure measure instead of a dichotomous one produces very similar results.
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category h hotel for the same room for a stay on the exact same day in April, first without any

knowledge of an upcoming pandemic, and then, fully in the midst of it, then I do the same thing

for a category 1 hotel, and estimate relative effects from one category to the next.

Two forms of the G function are used - the main specifications use G(δ) = exp(δ)/(1 + exp(δ))

to produce a logit model, and the alternate specifications use the identity G(δ) = δ to produce

a linear probability model (LPM). The logit model produces odds ratios and the LPM produces

marginal effects. The LPM is sometimes disfavored, but is a useful alternate lens for viewing

results since pre-pandemic expected closures were rare and odds ratios can grow very large with

small denominators. While t-statistics in an LPM are often viewed with caution, I note that

statistical significance patterns across logit and LPM models turn out to be very similar, errors

are all adjusted for heteroskedasticity using the Huber-White sandwich estimator, and 99.7% of all

LPM predicted values lies within the unit line. Standard errors are clustered at the hotel level in

all models.

In the second stage, I estimate a series of conditional price regressions, conditional on a hotel

remaining open during the pandemic, at the daily level. I compare each hotel’s expected price for

a given night stay in the month of April (as expected in late December before the start of the

pandemic) with its realized price for that same night stay in the month of April (as realized in

late March after the start of the pandemic). I estimate overall price changes and how they vary

across hotel and area characteristics including category ratings and local infection rates, with the

following equation:

f(PRICEijrt) = αp + βpHijr + γpDijr + δpVijr + ρpRr

+φp(Rr ∗Hijr) + ψp(Rr ∗Dijr)

+λp(Rr ∗ Vijr) + εpijrt

where PRICEijrt is a continuous variable representing the best available price for a standard room

in hotel i in county j for a stay occurring at time t according to the hotel’s expectations of demand

at time r < t. Two forms of the f function is used, the identify f(δ) = δ for a constant linear
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effects model and the log function f(δ) = ln(δ) for a constant percentage effects model. Matrices

are as defined above, and the εijrt is an i.i.d. normally distributed error term. Standard errors are

clustered at the hotel level in all models.

The key variables are again the interaction terms between the snapshot time R and the hotel

category rating H. These show by much how price decreases for a Category h hotel (from late

December expectations to late March realizations) exceeded the corresponding price decreases for

a Category 1 hotel over the same period. All price regressions use pairwise-complete data only, to

eliminate the potential for composition bias. In other words, hotels must be open and publishing

prices at both r = 0 (late December) and r = 1 (late March) for stays at time t (in April) to be

included in the price regressions.

The price effects measured here are conditional price effects, conditional on a hotel remaining

open. This is distinct from unconditional price effects, which measure the price changes that hotels

either implemented or, for closed hotels, would have implemented had they remained open. I am

primarily interested in conditional price effects, which represent the actual prices consumers paid

among their still available choices, but later I estimate a selection model that estimates uncondi-

tional price effects as well. Ex ante, I expect conditional and unconditional estimates to be similar,

since most hotels remained open even during the pandemic.

Of special interest is how the pandemic differentially affected hotels with different degrees of

native adaptability. Higher category hotels are generally the least adaptable, given their larger

scale, higher levels of personal services, and normally busier locations. Lower category hotels are

generally the most adaptable, given their quieter environments, limited services, and less-frills

approach. Table 1 shows that over 90% of hotels fall in the midrange Categories 2 through 5, with

the most common categories being Category 3, accounting for 36.7% of all hotels, and Category

4, accounting for 26.3% of all hotels. There are roughly equal numbers of Category 2 (13.3%) and

Category 5 hotels (14.0%), with relatively fewer Category 6 hotels (6.4%), and very few Category

1 (0.7%), Category 7 (1.9%), and Category 8 hotels (0.6%).
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5 Results

5.1 Closures

I begin by examining the overall impact of the pandemic on hotel closures, and report the results in

Table 2. I regress a hotel’s closure status CLOSED on the REALIZED variable and a constant.

Specification (1) is based on a logit model and displays odds ratios, Specification (2) is based on a

linear probability model and displays probability point changes.

Specification (1) shows that a hotel was 5.2 times more likely to report being closed in April,

from its pre-pandemic expectation to its within-pandemic realization.8 Specification (2) translates

this into probability point changes, and shows that April closures increased by 11.3 percentage

points from pre-pandemic expectations to within-pandemic realizations. These are hotels that had

expected to be open in April but reversed course and closed its doors once the pandemic hit. All

coeffi cients are statistically significant (different from one in the logit specification and different

from zero in the LPM) at better than the 1% level. Both specifications agree that the impact of

the pandemic on hotel closures was large.

Since the odds ratio in Specification (1) is less than infinity, one might ask why there were

any hotels at all planning to be closed in April as of the previous December. The constant term

in the LPM regression of Specification (2) shows that 3.2% of hotels fall in this category, and a

quick investigation reveals that the vast majority were new buildings under construction or buildings

undergoing renovations before becoming active. It is worth a quick side trip to ask whether existing

and new hotels differed in their rates of unexpected closure. On one hand, new hotels may find it

easier to postpone openings, since they need not lay off as many permanent staff or cancel as many

upcoming reservations, but on the other hand, new hotels often have higher debt obligations and

may be more eager to start generating revenue.

To investigate, I define existing hotels as those that were open and operating in January and

new hotels as those that were not. Specification (3) and (4) consider existing hotels. The logit

Specification (3) shows that an existing hotel open in January was 54.6 times more likely to un-

expectedly close in April. It is statistically significant at the 1% level. The LPM Specification

8More accurately, the odds of April closing versus April opening, according to the late March realization, was 5.2
times larger the odds of April closing versus April opening, according to the late December expectation.
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(4) provides an alternative look, and yields a coeffi cient on REALIZED of 11.3, statistically sig-

nificantly different from zero, and showing a 11.3 percentage point increase in unexpected April

closures of existing hotels. The constant coeffi cient is small, at 0.002, confirming that few hotels

were originally expected to be closed in April, partly accounting for the very high odds ratio.

Specification (5) and (6) consider new hotels instead. The logit Specification (5) shows that a

new hotel was only twice as likely to unexpectedly close in April, with "only" being a relative term.

But in probability point terms, the LPM Specification (6) shows a coeffi cient on REALIZED is

11.6, statistically indistinguishable from that of existing hotels (11.3) and all hotels overall (11.3).

Basically, the same percentage of existing and new hotels unexpectedly closed (or delayed openings),

but from very different baseline levels.9

Table 3 presents the full model regressions that examine the relationship between closures and

hotel and area characteristics, including a hotel’s native adaptability, as captured by the hotel’s

category rating, and area infection and death rates. I would expect hotels with higher category

ratings to experience higher closure rates. One might expect virus hot spot areas to be associated

with higher closures rates as well.

In Specifications (1) and (2), I regress closure status on REALIZED, a set of dichotomous

indicator variables for the category rating of a hotel (CATEGORY 2 − CATEGORY 8), with

CATEGORY 1 being the omitted variable, and all interactions between the two. Specification (1)

of Table 3 reports results from a logit model and Specification (2) reports results from an LPM.

To preserve space, I report only the category interaction terms plus the REALIZED coeffi cient

(relevant to the omitted Category 1) in the table.

Specification (1) shows that the pandemic had significantly heterogeneous effects across hotels

with different degrees of native adaptability. Impacts were severe across the board but especially

severe on higher-category hotels, where social distancing is most diffi cult. Category 1 hotels, ba-

sic limited-service hotels in mostly drive-through areas, had the fewest unexpected closures. The

9The concern that unexpected delays in the construction schedule - unrelated to the pandemic - might cause a few
additional unexpected April closures, is easily dismissed. Because it is problematic to have to contact customers and
cancel existing reservations, hotels often set opening dates conservatively into the future and move them forward in
stages as uncertainty over the construction time frame decreases. Any bias thus goes the other way - working towards
a small number of unexpected April openings rather than April closures. The construction industry itself was not
affected by stay-at-home orders and was generally able to proceed with building projects as usual.
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coeffi cient on REALIZED shows that a Category 1 hotel was "only" 20% more likely to unex-

pectedly close in April, relative to late December expectations. The point estimate is large but not

statistically significant given the small number of Category 1 hotels in the network.

The impact of the pandemic grew substantially larger with higher category hotels and lower

native adaptability. Category 2 hotels, simple hotels with limited services and usually located along

highways, were 77% more likely to close in April, relative to late December expectations. Category

3 and 4 hotels, more likely to be multi-service hotels, with restaurants, fitness centers, and pools,

and located in relatively higher demand areas, were 3.7 times (274%) and 3.6 times (260%) as

likely to close. Category 5 and 6 hotels, large full-service hotels located in popular tourist and

business destinations, were 5.3 times (427%) and 12.5 times (1154%) more likely to close. Category

7 and 8 hotels, the elite luxury hotels in the network located in the most prestigious locations, were

94.6 times (8461%) more likely and 27.01 times (1706%) more likely to close in April, relative to

December expectations. Coeffi cients are very large and statistically significantly different from one

in each case.

Specification (2) confirms the heterogeneity of effects in percentage point terms. The coeffi cient

on REALIZED shows that 2.4% of all Category 1 hotels unexpectedly closed in April, relative to

late December expectations. An additional 1.1% and 3.3% of Category 2 and 3 hotels unexpectedly

closed in April, up and above that of Category 1, for a total increase in closures of 3.5% and 5.7%,

relative to late December expectations. The individual coeffi cients are not statistically significantly

different from zero, but the total increases are. The remaining interaction coeffi cients show an

additional 6.8% of Category 4 hotels, 14.6% of Category 5 hotels, 35.9% of Category 6 hotels,

49.5% of Category 7 hotels, and 67.6% of Category 8 hotels, unexpectedly closed in April, up and

above that for Category 1, relative to late December expectations. The results agree and show

that native adaptability to the pandemic matters significantly for closure rates. The hotels least

amenable to social distancing are the most likely to close.

Next I add area characteristics to the model. Since higher category hotels are often located in

more populous areas, where the risk of infections is often larger, area characteristics rather than

internal hotel characteristics may play a role in hotel outcomes. To test for independent effects of

area characteristics, Specifications (3) (logit) and (4) (LPM) add county level population data to
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the model. Specification (3) shows that, conditional on the category of hotel, population has no

additional effect on hotel closures. The odds ratio is very close to one, and insignificantly different

from it. Specification (4) confirms this in probability point terms, with a marginal effect close to

and insignificantly different from zero. Meanwhile, the category interactions continue to be as large

and as statistically significant as before.

Specifications (5) and (6) present the full model that includes virus-related infections and deaths

as well. I regress April closure status on county-level COVID-19 cases, COVID-19 deaths, county-

level population, a complete set of hotel category indicator variables, plus interactions between

all of the above and the REALIZED variable. Cases are measured in cases per thousand and

deaths are measured in deaths per million to avoid very small coeffi cients in the table. If demand

decreased disproportionately more in those areas where the rate of transmission was also high, we

should expect to see more closures in those areas. If instead demand decreased more uniformly

across the country, consistent with widespread stay-at-home orders, we should not see as much of

a difference. I report only the interaction coeffi cients and the REALIZED coeffi cient in the table

to preserve space.

Specification (6), based on the LPM, shows a positive coeffi cient on infection rates, but it is

surprisingly small. The coeffi cient implies that for every five hundred new cases in a county of

five hundred thousand people (every 0.1% increase in the infection rate), the probability of closure

would increase by just 1.3%. In April, a 0.1% infection rate was well above the national county

average, so little variation in closure rates can be explained by infection rates. The coeffi cient is

statistically significant at the 10% level only. The corresponding coeffi cient in the logit model of

Specification (5) is positive but not statistically significant. I find no effect of local death rates on

closures in either case.10

Albeit small, the relatively larger impact of infection rates over death rates has an interesting

parallel with the crime literature. That literature finds that crime is generally more responsive

to the probability of being caught rather than the severity of the punishment after being caught

(Chalfin & McCrary (2017)). Here, demand is more responsive to the probability of catching the

virus rather than the severity of the illness after catching it.

10The result is consistent with Kim et al. (2020) who find little impact of local area infections on revenue losses.
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In both specifications, the hotel category interaction coeffi cients continue to be high and statis-

tically significant. The result is robust across specifications and it shows that hotels that are less

natively adaptable to the pandemic fared relatively worse, and those that are more natively adapt-

able fared relatively less worse. It is the intra-industry counterpart to the inter-industry findings in

the literature. The recent COVID-19 literature identifies a set of industries that have particularly

high failure risks and losses, and these are also the industries where one would expect native adapt-

ability to be especially low, e.g. retail, travel, and other non-essential offl ine industries (Bloom et

al. (2021), Fairlie & Fossen (2021), Alekseev (2020), Davis et al. (2020), Gourinchas (2020)). The

results here show that native adaptability matters not just across industries but within industries.

Within-industry heterogeneity can and should be taken into account, as well as other factors, in

understanding failure risk. Recall that Bartik et al. (2020a) show that PPP funds were distributed

largely to those with good pre-existing banking relationships, and not necessarily to those in the

greatest need. The results of this study show one way to measure need and improve upon that

outcome.

5.2 Price Effects

The pandemic is felt not only in the businesses that close their doors but in those that stay

open. I examine price impacts in a series of conditional price regressions, i.e. conditional on a

hotel remaining open, and report the results in Table 4. Specification (1) uses price levels as the

dependent variable and yields constant dollar estimates, and Specification (2) uses the log of price

and yields constant percentage estimates. These are always pairwise price comparisons - for the

same room in the same hotel for the same night in April, once based on late December expectations

and once based on late March realizations.

Both specifications find that the conditional price effects are large. Specification (1) shows

that hotel operators lowered prices for April stays by an average of $39.24, from late December

expectations to late March realizations. Specification (2) translates this into constant percentages

and shows that hotels lowered prices by an average of 23.0%.11

But not all hotels lowered prices. Price decreases far outnumbered price increases, but a mean-

11The average percentage effect is given by exp(−0.261)− 1 = 0.23.
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ingful percentage of hotels actually raised prices for April dates after the pandemic hit. A simple

ordered logit model shows that the probability that a price would fall was 0.83 (s.e. 0.004), the

probability that a price would remain stable was 0.03 (s.e. 0.001) and the probability that a price

would rise was 0.13 (s.e. 0.003). I return to which hotels increased prices and why later.

Specifications (3) through (6) revisit differences between existing and new hotels. Specifications

(3) and (4) limit the data to only existing hotels, and show that April prices fell an average of $39.09,

or 22.9%, relative to late December expectations. Specification (5) and (6) limit the data to only

new hotels and show that April prices fell an average of $61.53, or 30.4%, relative to late December

expectations. All coeffi cients are statistically significant at the 1% level and statistically significantly

different from each other in cross-equation tests. If higher capital expenditures following a new

build or renovation applies greater pressure on a new hotel to generate positive revenue flow, it

can incentivize such hotels to price more aggressively. The effect persists even controlling for other

factors.

Table 5 presents the full model regressions that examine the relationship between conditional

price effects and hotel and area characteristics, including native adaptability as captured by ho-

tel category ratings, and infection and death rates. In Specifications (1) and (2), I regress price

(or log price) on REALIZED, a set of dichotomous indicator variables for the category rating

(CATEGORY 2 − CATEGORY 8), with CATEGORY 1 being the omitted variable, and all

interactions between the two. Specification (1) uses a linear-linear functional form and the Specifi-

cation (2) uses a log-linear functional form. The results show that the impact of the pandemic on

prices was severe, especially on higher-category hotels where social distancing is more diffi cult. The

coeffi cients on REALIZED show that a Category 1 hotel discounted its April prices, from late

December expectations to late March realizations, an average of $8.29, or 8.7%. Summing relevant

coeffi cients, Category 2 hotels discounted April prices an average of $18.93 or 15.9%, Category 3

hotels discounted April prices an average of $30.29, or 20.9%, and Category 4 hotels discounted

April prices an average of $45.15, or 25.5%.12 At the higher end of the spectrum, Category 5 hotels

discounted prices an average of $64.72 (29.8%), Category 6 hotels discounted prices an average of

12For example, the Category 2 absolute discount is $8.29 + $10.64 = $18.93, and its percentage discount is
exp(−0.091− 0.083)− 1 = 0.159.
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$83.26 (31.8%), and Category 7 hotels discounted prices an average of $94.97 (28.3%). Category 8

hotels discounted prices an average of $119.18, or 23.4%. All estimates are statistically significantly

different from zero.

Specifications (3) and (4) add county population to the model. The point estimates on popula-

tion are negative as expected, but small, and statistically significant only in Specification (3). The

coeffi cient implies that every additional one million people in a county results in only an additional

one dollar discount. The hotel category interaction coeffi cients continue to be large and statistically

significant in every case.

Specifications (5) and (6) present the full model that includes virus-related infections and deaths

in the surrounding area. I regress April prices on county-level COVID-19 cases, COVID-19 deaths,

county-level population, a complete set of hotel category indicator variables, plus interactions be-

tween all of the above and the REALIZED variable. The results show that local area infection

and death rates have little effect on pricing. Specification (5) shows a statistically significant but

economically small impact of infections on price discounts, with each additional five hundred in-

fections in a county of five hundred thousand people resulting in an only a $1.32 discount. The

corresponding coeffi cient in Specification (6) is not statistically significant. Death counts are not

statistically significant in either case, conditional on the number of infections.

Consistent with the closures analysis, the primary factor driving heterogeneity in the price

change distribution is a hotel’s native adaptability. Small, limited-service hotels along highways

catering to drive-through traffi c responded with the smallest average price discounts overall, while

large full-service hotels that are destinations unto themselves responded with the largest average

price discounts, in absolute and percentage terms. There is some evidence that infection hotspots

matter, but the estimates are small and statistical significance is mixed.

I noted earlier that there was a meaningfully large number of April price increases, rather than

price decreases, from late December expectations to late March realizations, in spite of occupancy

losses across the board. If native adaptability were an underlying cause, I would expect lower

category hotels to raise April prices the most often. These hotels are the most natively adaptable

to the pandemic, smaller with fewer public spaces and fewer ancillary services, easier ingress and

egress (generally in a private vehicle), and more amenable to social distancing.
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A breakdown of the direction of price changes by hotel category confirms that this is the case.

Category 1 hotels increased instead of decreased prices the most, 26.7% of the time, in spite of

lower demand. Category 2 hotels increased prices the second most, 18.8% of the time and Category

3 hotels increased them the third most, 13.8% of the time. Percentages fall monotonically as

category rating increases, up to Category 8 hotels which increased them just 1.2% of the time. It

is an interesting demonstration of how the pandemic inverted long-standing notions of "high" and

"low" quality, with lower-category hotels becoming a relatively better option in the pandemic for

its normally less notable non-price features.

There is an interesting overlap here with the branded pharmaceutical pricing literature. That

literature shows that when low-cost generic manufacturers begin producing a drug after the branded

drug manufacturer loses patent protection, the branded firm sometimes responds by increasing,

rather than decreasing, its branded price (Frank & Salkever (2004), Berndt & Conti (2018)). It is

more profitable for the branded firm to do so because consumers who still insist on a purchasing

the branded version of the drug even when much cheaper generic alternatives are available tend

to be more inelastic and care more about non-price characteristics. I find a similar effect here -

consumers who still insist on staying at hotels in a pandemic are likely to be more inelastic and

care more about non-price characteristics, which in this context includes a greater ability to social

distance throughout a stay. A more inelastic residual consumer still traveling in a pandemic can

enable a significant number of lower category hotels to raise prices.

5.3 Alternate Specifications

Table 6 reports results from a set of alternate regressions to check the robustness of the main

results. Specifications (1) and (2) revisit the main model using infection and death growth rates

instead of infection and death rates themselves (i.e. the rate of change in infection and death rates).

It addresses the concern that consumers may care more about quickly emerging hotspots rather

than steady rates of infection. Specification (1) is a closure regression based on the logit model and

Specification (2) is the corresponding price regression based on a linear model.13 The dependent

13A challenge in measuring growth rates is that, as of late March, many areas had few or no infections or deaths,
leading to either zero or undefined growth rates. Another is that growth rates up to late March are generally highly
correlated with the usual rates because rates largely started close to zero in March. I thus assume a perfect foresight
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variables are not the same across specifications so the point estimates are not comparable, but the

overall patterns in the coeffi cients are.

The specifications confirm the main results. The pandemic had a severe impact on closures and

prices overall, and the heterogeneity in effects is largely driven by native adaptability. The coeffi cient

on the infection growth rate is statistically significant in the price regression, but economically small,

and the other COVID—19 coeffi cients are not statistically significant.

Specification (3) addresses another concern, specific to the price regressions, that prices for some

April stays could mechanically rise from late December to late March simply because of expiring

advance purchase discounts. This would potentially violate the unbiased expectations assumption,

and ultimately bias price effects downwards towards zero. The concern is unlikely to be a problem

for several reasons. First, advance purchase discounts are limited across the network and, second,

they are often exchanged with an equivalent discount under a different name or by a newly-lowered

regular rate upon expiration. Third, the size of the discount (generally 5%) is dwarfed by the

magnitude of price effects estimated here, and fourth, the bias actually goes the wrong way and

would only make the results more conservative.

It is possible nonetheless to test for the effect of advance purchase discounts. The vast majority

of discounts, where offered, expire within fourteen days of the stay, which suggests a simple test. I

define the indicator variable ADV ANCE to be equal to one if a stay takes place in the last half

of April, and zero if it takes place in the first half of April. I add both it and its interaction with

REALIZED to the full model. Advance purchase discounts cannot be a factor in late April stays

since a discount available in late December will still be available in late March. It can only be an

issue for early April stays, where a late December discount may have expired. If expiring discounts

are materially affecting estimates, the interaction term should be negative and large, showing that

late April prices fell significantly more than early April prices from the first to the second snapshot

(because early April prices include this potential offset). If so, the estimated price effects would be

understated.

model in which hotel operators can predict infection and death rates in their respective counties as of the end of
April, from current information. If infection and death rates are expected to increase at a steady or proportional
rate, then the original model applies. I calculate the infection growth rate as the monthly change in infections per
thousand people and the death growth rate as the monthly change in deaths per million people over April.
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I find this not to be the case. Specification (3) shows that the coeffi cient on the ADV ANCE

interaction is very small and statistically insignificant. The point estimate corresponds to only a

37 cent additional price decrease for late April stays than for early April stays, from the first to the

second snapshot. Compare this to the overall estimated price decrease for April stays from the first

to the second snapshot of $39.24. Advance purchase discounts do not meaningfully affect results.

Specification (4) addresses another potential concern, also specific to the price regressions, that

serial correlation in prices could lead to downward-biased standard errors and overrejection bias.

Bertrand et al. (2004) show in Monte Carlo simulations that standard OLS implementation in the

presence of serially correlated data without standard error corrections can reject the null hypothesis

of no effect (at the 5% level) almost 50% of the time when the null is true.

To address this, I implement the two corrections that Bertrand et al. find work best. First, I use

an arbitrary variance-covariance matrix to estimate standard errors, i.e. clustering, to account for

serial correlation in the error term. This correction is already embedded into all the specifications

contained in this study and all the standard errors in the tables already include it. Bertrand et al.

show that this adjustment largely cures overrejection bias when there are many clusters. With fifty

clusters, the rejection rate falls to 6% (instead of 50%) when the null is true and the 5% significance

level is used. The dataset in this study has over five thousand clusters, so overrejection bias using

the corrected standard errors is largely a non-issue.

I can confirm the absence of overrejection bias another way as well, by implementing the second

suggested method. I aggregate the data up to a coarser unit of time, essentially collapsing serially

correlated observations into a single observation, and removing much of the time dimension from

the analysis. This approach reduces Type I error to the correct level, even with few clusters, but at

the cost of increasing Type II error. I report results of the aggregated model in Specification (4).

Even though the number of observations is reduced from over a quarter of a million to less than

ten thousand (a total of two per open hotel), point estimates and statistical significance levels are

similar to that from the full data and all conclusions carry through.14

14The closure regressions already natively include this correction, since the data in those regressions are aggregated
to the monthly level (with two datapoints per hotel based on R = 0 and R = 1). I do not duplicate those specifications
here.
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5.4 Conditional and Unconditional Price Effects

A remaining question surrounds the difference between conditional price effects, i.e. average price

changes conditional on a hotel actually remaining open, and unconditional price effects, i.e. average

price changes in a hypothetical world in which all hotels would have remained open during the

pandemic, even those that decided to close. I am primarily interested in conditional price effects,

but it would be interesting to see how the two sets compare. Unconditional effects are of prime

interest in other settings, such as in studies of gender wage inequality.

Estimating unconditional effects requires a selection equation that includes variables determin-

ing whether a hotel is likely to remain open (observed) or to close (unobserved), but that does not

affect the price discount they would offer if open. The challenge is that the pandemic shocked hotel

demand, and demand factors that affect hotel closures are likely to also affect hotel prices.

One promising idea relates to the length of commitment between a hotel and its customers.

Most hotels cater to very short visits, (e.g. overnight, weekend, a vacation week), but three brands

in the hotel company’s portfolio are distinct in that they cater to longer term stays instead. These

long-stay hotels make up 25% of all hotels in the network. They provide kitchenettes in all rooms,

appliances and dishware, and a small living and dining area in each room. They are open to all

consumers, but are actively marketed as temporary or semi-permanent living quarters for contract

workers, businesspeople, and other residents. The average length of stay in these hotels is much

longer. Approximately half of long-stay hotel guests stay for more than a week and half of those

for more than a month.

This suggests a potentially useful selection variable. The longer time commitment between

a long-stay hotel and its existing long term guests means that these hotels should be less likely

to close than their non-long-stay counterparts, even as occupancy rates falls, because they have

made a commitment to provide long term accommodations to remaining long-stay residents. At

the same time, conditional on remaining open, their price discounts should be similar to those of

non-long-stay hotels because they still compete for the same residual short-stay consumers. Their

pricing decisions continue to be interdependent.

I first test for the requisite relationship between long-stay hotels and closure rates. I define the
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dichotomous variable STAY to be equal to one if a hotel is part of the one of these long-term-

stay brands, and zero otherwise. I add both it and its interaction with REALIZED to the main

logit model for hotel closures and re-estimate the model in Specification (5). The coeffi cient on

the STAY interaction variable is 0.288, less than one, and statistically significantly so, showing

that long-stay hotels were indeed less likely to close compared with non-long-stay hotels. Other

coeffi cients in the model are not meaningfully affected.

I then estimate a full two-stage Heckman selection model. The first stage selection equation is

based on a probit model, as is standard, and includes the complete set of right hand side variables

plus STAY and its interaction term as selection variables. The dependent variable in the first stage

is OPEN rather than CLOSED since complete prices are observed only for hotels that remained

open. The second-stage price regression equation is based on a linear functional form and contains

the complete set of right hand side variables except for STAY and its interaction.

Specification (6) presents the second-stage results and shows that the unconditional price effects

are similar to the conditional price effects estimated earlier.15 It is not surprising given that 85%

of hotels were still open. The point estimates are only marginally smaller, consistent with the

idea that hotels that choose to close down are also those that cannot profitably lower prices to the

necessary degree to compete. All other conclusions carry through. The main driver of heterogeneity

continues to be native adaptability. Higher category hotels offer the largest discounts as they try

to attract residual consumers who see them less favorably in a pandemic, and lower category hotels

offer the smallest, both in absolute and percentage terms. Coeffi cients on population and infection

rates continue to be statistically significant, but small.

5.5 Expectation Dynamics

Finally, it would be interesting to take a quick look at expectation dynamics and ask whether

hotels expected the collapse in demand to persist beyond just a few months, at least as of late

March. I test this using additional closures and price data for the month July 2020, based on

the same two snapshots from late December 2019 and late March 2020. Since it is presumably

15Coeffi cients in the first-stage probit model are not shown, but have similar significance patterns to the corre-
sponding logit model. The STAY interaction is statistically significant and positive, and the inverse mills ratio is
statistically significant and negative.
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costly to prematurely announce a July closure only to recant it later, or prematurely offer July

discounts only to regret it later, I would expect firms to be relatively conservative in their approach

to distant stays, as of late March. Any effect I find should reflect a reasonably strong downturn in

expectations about July prospects.

I present results in Table 7. Specifications (1) and (2) examine the change in July closures,

from late December expectations to late March expectations. Specification (1) is a high-level

closure regression and Specification (2) is the full model including hotel and area characteristics.

Specification (1) yields a coeffi cient on the REALIZED variable of 0.006, statistically significant

but very small, and showing that very few hotels had changed course and committed to a longer

term closure by late March. Specification (2) shows, of those that did, higher category hotels were

most likely to close. The interaction coeffi cients may appear large at first glance, but they are

only large to offset the imprecisely estimated and negative REALIZED main effect, applicable

to the few Category 1 hotels in the data. Adding the relevant category interaction coeffi cient

to the REALIZED main effect, the estimated closure rates are less than 1% and statistically

insignificant for Categories 2, 3, 7, and 8. Estimated closure rates are statistically significant

for the most common higher categories, 1.3% for Category 4, 1.5% for Category 5, and 2.6% for

Category 6.

Specifications (3) and (4) are the corresponding price regressions for July 2020. Specification

(3) shows a coeffi cient on REALIZED of −1.074, statistically significant but very small, and

implying only a one dollar price discount built into July prices as of late March. Specification (4)

presents the full model and shows positive point estimates on the lower three category interactions

(with one significant), and negative point estimates on the upper five (with four significant). The

highest average price increase for July stays was $3.14, for Category 3 hotels (summing the relevant

coeffi cients), and the highest average price discount for July stays was $24.81, for Category 8 hotels.

The price discounts are higher with higher category hotels, consistent with the fact that consumers

often begin planning vacations and other destination travel further in advance than they do for

other trips.

The results are generally consistent with those of Bartik et al. (2020b) who find significant

heterogeneity in firms’expectations about when demand would rebound, and Fairlie (2020) who
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find that demand was modestly rebounding already beginning in May.

6 Conclusion

The COVID-19 pandemic caused an economic collapse of a size and speed not before seen. The

virus began spreading rapidly in mid-March 2020 and, within a few weeks, state governments

began shutting down large portions of the economy to slow it down. Federal and state governments

scrambled to provide emergency financial support to businesses through a series of hastily assembled

programs, but a lack of advance planning and vetting of recipients meant that the relief did not

always go to where it was most needed (Bartik et al. (2020a)).

To target emergency funds more effi ciently in a pandemic, it is necessary to step back and ask

which individual businesses are likely to have the greatest failure risk in a pandemic. Much is

known about heterogeneous failure risk at the industry level (e.g. Davis et al. (2020), Gourinchas

(2020)) but less is known about heterogeneous failure risk at the intra-industry level. Firm size

and solvency are important factors (e.g. Alekseev et al. (2020)), but another is relative demand

loss - how losses are spread among businesses in an industry during a pandemic. Most industries

are made up of heterogeneous businesses selling heterogeneous goods to heterogeneous consumers,

and demand loss is rarely equal across businesses. It is easy to see how demand losses can differ

across businesses in the same industry - Amazon versus brick-and-mortar retailers, drive-in movie

theatres versus indoor movie theatres, fast-food drive-thrus versus table-service restaurants with a

view, roadside motels with drive-up rooms versus downtown hotels with congested elevators, and

so on.

In this article, I focused on one of the many industries hit hard by the pandemic, the hotel and

lodging industry. I utilized a new microdataset of hotel closures and prices for over five thousand

hotels in a three dimensional panel, that included two time dimensions. I found that the impact of

the pandemic on closures was severe. It was most severe for higher category hotels where native

adaptability to the pandemic is most diffi cult. Closure odds ratios approached triple digits and

closure rates exceeded 50% in percentage point terms at the higher end of the category scale. Price

discounts averaged 23% but topped out at over 30% in the higher categories. A meaningful number
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of hotels at the lower end of the category scale were actually able to increase prices, because their

product and service characteristics are amenable to travellers in a pandemic.

In absolute terms, there were likely no winners in the hotel industry. April occupancy rates were

68.7% lower than the previous April (STR (2020)), and with average prices down 23.0% for those

hotels that remained open, simple calculations show that average revenues fell by an incredible

75.8%. In terms of profitability, note that a common estimate of net profit margins in normal

times is about 8% and a common estimate of the ratio of fixed costs to all costs in normal times

is about 70%. If variable costs are proportional to occupancy rates and fixed costs are not, simple

calculations show that total costs would fall by only 20.6%, next to a 75.8% drop in revenues. This

corresponds to a 766% drop in profits on average overall, basically in a month.

The results of this study show that all or almost all hotels suffered demand losses and that

higher category hotels did relatively worse than lower category ones due to differences in native

adaptability, all else equal. Size and solvency are important as well, but these are altogether

different from native adaptability which drives relative demand loss. The point of this article is

that the latter should be taken into account as well, wherever possible. It would be a significant

exercise given its microeconomic nature, but with an important effi ciency purpose.

With the need for economic assistance in a pandemic so great, and public funds insuffi cient to

support an economic shutdown for even a short while, it is important to start thinking about native

adaptability when looking to distribute emergency funds in the most effi cient manner possible. This

article starts a conversation along these lines.
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Num. Obs. Mean Std. Dev. Min. Max.

Price per Night 35024 171.17 91.60 23.7 2253.2

Closures 42104 0.168 0.374 0.0 1.0

Category 1 42024 0.007 0.088 0.0 1.0

Category 2 42024 0.133 0.339 0.0 1.0

Category 3 42024 0.367 0.482 0.0 1.0

Category 4 42024 0.263 0.440 0.0 1.0

Category 5 42024 0.140 0.348 0.0 1.0

Category 6 42024 0.064 0.244 0.0 1.0

Category 7 42024 0.019 0.138 0.0 1.0

Category 8 42024 0.006 0.075 0.0 1.0

County Population 42104 1136.70 1612.710 5.5 10170.3

County Infections 42104 902.61 2541.84 0.0 25271.0

County Deaths 42104 35.41 109.16 0.0 1226.1

Table 1. Summary Statistics

Population in thousands . Infections  and deaths  in cases . Price  per Night in dol lars .

Dep. Var.: Closed (1) (2) (3) (4) (5) (6)

Realized 5.158** 0.113** 54.585** 0.113** 1.968** 0.116**

(22.757) (25.395) (13.855) (25.122) (4.190) (4.266)

Constant 0.033** 0.032** 0.002** 0.002** 2.541** 0.718**

(‐43.462) (13.131) (‐20.894) (3.468) (6.156) (23.346)

Model Logit LPM Logit LPM Logit LPM

Jan. 2020 Status All All Open Open Closed Closed

Num. Obs. 10526 10526 10094 10094 432 432

Adj/Psuedo R‐squared 0.071 0.040 0.164 0.057 0.018 0.017

Table 2. High‐Level Closure Regressions

Logit estimates  expressed as  odds  ratios . t‐s tati s tics  (LPMs) or z‐scores  (logi t) in parentheses . 

** Signi fi cant at the  5% level . * Signi fi cant at the  10% level .



 

 

 

 

Dep. Var.: Closed (1) (2) (3) (4) (5) (6)

Realized 1.201 0.024 1.247 0.026 1.207 0.024

(1.011) (1.012) (1.196) (1.076) (1.005) (1.009)

Category 2 * Realized 1.765** 0.011 1.766** 0.011 1.723** 0.011

(2.261) (0.449) (2.266) (0.450) (2.165) (0.424)

Category 3 * Realized 3.744** 0.033 3.738** 0.033 3.619** 0.031

(5.528) (1.321) (5.532) (1.320) (5.342) (1.254)

Category 4 * Realized 3.600** 0.068** 3.669** 0.069** 3.492** 0.066**

(5.607) (2.686) (5.706) (2.720) (5.377) (2.602)

Category 5 * Realized 5.267** 0.146** 5.484** 0.148** 5.185** 0.145**

(6.655) (5.262) (6.660) (5.320) (6.309) (5.217)

Category 6 * Realized 12.542** 0.359** 12.940** 0.360** 12.346** 0.357**

(8.159) (9.990) (8.205) (10.028) (8.019) (9.944)

Category 7 * Realized 94.610** 0.495** 97.280** 0.496** 91.425** 0.491**

(4.451) (8.993) (4.488) (9.021) (4.416) (8.937)

Category 8 * Realized 27.061** 0.676** 27.973** 0.677** 25.727** 0.669**

(4.816) (7.754) (4.843) (7.771) (4.670) (7.702)

Population * Realized 1.000 0.000 1.000 0.000

(‐1.084) (‐0.735) (‐1.009) (‐0.720)

Infections/1KPop * Realize 1.041 0.013*

(0.364) (1.835)

Deaths/1KPop * Realized 1.006 0.000

(0.964) (‐1.106)

Model Logit LPM Logit LPM Logit LPM

Num. Obs. 10506 10506 10506 10506 10506 10506

Adj/Psuedo R‐squared 0.155 0.130 0.155 0.129 0.156 0.130

Table 3. Main Closure Regressions

Logit estimates  expressed as  odds  ratios . t‐stati s ti cs  (LPMs) or z‐scores  (logit) in parentheses . 

** Signi fi cant at the  5% level . * Signi ficant at the  10% level .

(1) (2) (3) (4) (5) (6)

Realized ‐39.236** ‐0.261** ‐39.088** ‐0.261** ‐61.527** ‐0.363**

(‐75.377) (‐83.737) (‐75.174) (‐83.366) (‐6.849) (‐8.459)

Constant 161.786** 5.020** 161.634** 5.019** 184.609** 5.140**

(196.547) (1135.593) (196.242) (1134.137) (14.029) (76.064)

Dependent Variable: PRICE ln(PRICE) PRICE ln(PRICE) PRICE ln(PRICE)

Num. Obs. 258792 258792 257084 257084 1708 1708

Adj R‐squared 0.108 0.138 0.107 0.137 0.213 0.229

Table 4. High‐Level Price Regressions

t‐stati s tics  in parentheses . ** Signifi cant at the  5% level . * Signi ficant at the  10% level .



 

(1) (2) (3) (4) (5) (6)

Realized ‐8.290** ‐0.091** ‐7.553** ‐0.089** ‐7.290** ‐0.088**

(‐3.770) (‐3.788) (‐3.411) (‐3.715) (‐3.289) (‐3.670)

Category 2 * Realized ‐10.639** ‐0.083** ‐10.630** ‐0.083** ‐10.486** ‐0.082**

(‐4.583) (‐3.308) (‐4.581) (‐3.310) (‐4.516) (‐3.281)

Category 3 * Realized ‐21.998** ‐0.144** ‐22.026** ‐0.144** ‐21.761** ‐0.143**

(‐9.659) (‐5.888) (‐9.677) (‐5.899) (‐9.546) (‐5.851)

Category 4 * Realized ‐36.863** ‐0.203** ‐36.456** ‐0.202** ‐35.997** ‐0.200**

(‐15.327) (‐8.190) (‐15.140) (‐8.145) (‐14.887) (‐8.061)

Category 5 * Realized ‐56.429** ‐0.262** ‐55.594** ‐0.260** ‐55.117** ‐0.258**

(‐19.783) (‐10.146) (‐19.326) (‐10.025) (‐19.134) (‐9.944)

Category 6 * Realized ‐74.971** ‐0.292** ‐74.352** ‐0.291** ‐73.940** ‐0.289**

(‐17.311) (‐9.422) (‐17.169) (‐9.372) (‐17.015) (‐9.299)

Category 7 * Realized ‐86.682** ‐0.242** ‐85.762** ‐0.239** ‐85.284** ‐0.238**

(‐11.178) (‐6.089) (‐11.128) (‐6.013) (‐11.140) (‐5.968)

Category 8 * Realized ‐110.887** ‐0.175** ‐108.593** ‐0.170** ‐108.287** ‐0.168**

(‐17.329) (‐6.264) (‐16.921) (‐5.599) (‐16.907) (‐5.560)

Population * Realized ‐0.001** 0.000 ‐0.001** 0.000

(‐2.430) (‐1.038) (‐2.453) (‐1.062)

Infections * Realized ‐1.323* ‐0.003

(‐1.854) (‐0.709)

Deaths * Realized 0.005 0.000

(0.219) (‐0.328)

Dependent Variable: PRICE ln(PRICE) PRICE ln(PRICE) PRICE ln(PRICE)

Num. Obs. 258792 258792 258792 258792 258792 258792

Adj/Psuedo R‐squared 0.434 0.426 0.440 0.432 0.441 0.434

Table 5. Main Price Regressions

Logit estimates  expressed as  odds  ratios . t‐stati s tics  (LPMs) or z‐scores  (logit) in parentheses . 

** Signi fi cant at the  5% level . * Signi ficant at the  10% level .



 

(1) (2) (3) (4) (5) (6)

Realized 1.201 ‐6.834** ‐7.094** ‐7.309** 1.540** ‐6.492**

(0.961) (‐3.027) (‐3.195) (‐3.304) (2.106) (‐3.233)

Category 2 * Realized 1.695** ‐10.404** ‐10.487** ‐10.453** 1.720** ‐10.013**

(2.097) (‐4.413) (‐4.516) (‐4.509) (2.100) (‐4.867)

Category 3 * Realized 3.536** ‐21.605** ‐21.761** ‐21.796** 3.640** ‐20.430**

(5.231) (‐9.330) (‐9.547) (‐9.580) (5.197) (‐10.072)

Category 4 * Realized 3.445** ‐35.962** ‐35.997** ‐36.255** 3.532** ‐33.621**

(5.362) (‐14.681) (‐14.887) (‐15.004) (5.326) (‐16.401)

Category 5 * Realized 5.133** ‐55.006** ‐55.116** ‐56.828** 4.686** ‐50.409**

(6.311) (‐18.978) (‐19.134) (‐19.404) (5.857) (‐23.683)

Category 6 * Realized 12.373** ‐73.898** ‐73.944** ‐77.183** 10.666** ‐63.404**

(8.023) (‐16.965) (‐17.015) (‐17.517) (7.455) (‐25.752)

Category 7 * Realized 94.826** ‐85.427** ‐85.289** ‐94.551** 74.577** ‐67.628**

(4.459) (‐11.197) (‐11.140) (‐11.800) (4.215) (‐20.211)

Category 8 * Realized 27.760** ‐108.452** ‐108.254** ‐107.900** 21.264** ‐93.921**

(4.837) (‐16.862) (‐16.878) (‐16.445) (4.428) (‐12.825)

Population * Realized 1.000 ‐0.001** ‐0.001** ‐0.001** 1.000 ‐0.001**

(‐1.075) (‐2.420) (‐2.453) (‐2.306) (‐0.982) (‐8.540)

Infections * Realized ‐1.323* ‐1.449** 0.989 ‐1.005**

(‐1.854) (‐1.970) (‐0.239) (‐3.533)

Deaths * Realized 0.005 0.005 1.001 0.002

(0.219) (0.186) (1.323) (0.238)

Infection Rate*Realized 0.983 ‐0.721**

(‐0.385) (‐2.673)

Death Rate*Realized 1.001 0.003

(1.388) (0.837)

Advance*Realized ‐0.367

(‐1.209)

Stay*Realized 0.288**

(‐8.620)

Model: Logit Linear Linear Linear Logit Selection

Dependent Variable: CLOSED PRICE PRICE PRICE CLOSED PRICE

Collapsed Data Y N N Y Y N

Num. Obs. 10506 258792 258792 8976 10506 286092

Adj R‐squared 0.156 0.443 0.442 0.560 0.167

Table 6. Alternate Specifications

Logit estimates  expressed as  odds  ratios . t‐stati s ti cs  (price) or z‐scores  (logi t) in parentheses . 

** Signi fi cant at the  5% level . * Signi fi cant at the  10% level .



 

(1) (2) (3) (4)

Realized 0.006** ‐0.049 ‐1.074** 1.176

(2.835) (‐1.468) (‐3.193) (1.174)

Category 2 * Realized 0.042 1.679

(1.226) (1.539)

Category 3 * Realized 0.050 1.960*

(1.476) (1.871)

Category 4 * Realized 0.063* ‐0.430

(1.846) (‐0.355)

Category 5 * Realized 0.065* ‐7.506**

(1.871) (‐4.803)

Category 6 * Realized 0.076** ‐11.540**

(2.110) (‐4.701)

Category 7 * Realized 0.049 ‐21.747**

(1.434) (‐5.099)
Category 8 * Realized 0.048 ‐25.982**

(0.830) (‐3.871)

Population * Realized 0.000 ‐0.001**

(0.543) (‐2.860)

Infections * Realized 0.001 0.069

(0.196) (0.127)

Deaths * Realized 0.000 ‐0.005

(‐0.905) (‐0.240)

Model: LPM LPM Linear Linear

Dependent Variable: CLOSED CLOSED PRICE PRICE

Num. Obs. 10526 10506 300602 300602

Adj/Psuedo R‐squared 0.000 0.008 0.000 0.453

Table 7. Closure and Price Regressions, July

t‐stati s ti cs  in parentheses . ** Signi ficant at the  5% level . * Signi fi cant at the  10% level .
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