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Abstract

I exploit a new station-level, twelve-hourly price dataset to examine the strong retail price cycles in the
Toronto gasoline market. The cycles appear similar to theoretical Edgeworth Cycles: strongly asym-
metric, tall, rapid, and highly synchronous across stations. I test a series of predictions made by the
theory about how firm behaviors would differentially evolve over the path of a cycle. The evidence is
consistent with the existence of Edgeworth Cycles and inconsistent with competing hypotheses. While
the cycles are an interesting phenomenon for study in their own right, the evidence has important policy
and welfare implications.

I INTRODUCTION

IN MANY CANADIAN CITIES, RETAIL GASOLINE PRICES follow a high-frequency, asymmetric price cycle.
Publicly available weekly price series show the cycle begins with a large and sudden increase in retail prices
followed by many small price decreases over subsequent periods. Once markups are sufficiently small, prices
jump back up and the cycle begins anew. The repeated pattern of behavior is strikingly similar in appearance
to the theoretical (but in practice, arguably implausible) ‘Edgeworth Cycles’ of Maskin & Tirole[1988]. As
discussed below, Maskin & Tirole derive their Edgeworth Cycles as a Markov equilibrium outcome of a
dynamic homogeneous-good Bertrand game where firms alternate in choosing prices. But is the cycling
phenomenon observed in Canadian retail gasoline markets really Edgeworth Cycles?

Pricing dynamics in these markets are not well understood, yet understanding the mechanism driving
the cycle is important in many ways. From a policy perspective, evidence suggestive of Edgeworth Cycles
would help rule out other hypotheses such as covert collusion, the subject of numerous resource-consuming
investigations. It would teach us how welfare-enhancing reversion back to low market prices after every peak

works and what causes prices to peak again. It would also teach us that prices, while volatile, are to some
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extent predictable. Thus better informed, elastic consumers could increase their surplus by appropriately
timing purchases of gasoline, which could in turn generate Coasian dynamics and lower prices.

Evidence of Edgeworth Cycles would also be interesting in its own right, as such cycles have seldom been
documented empirically. Their existence would contrast assumptions of reversion to a single long run steady
state price made in most intertemporal models of gasoline markets. Combined with quantity data, one
could also estimate short run own and cross price elasticities over a wide range of prices on the equilibrium
path within a short controlled time frame. However, to date, very little empirical work has been done to
understand these cycles.

Two relevant articles are Noel[2004a] and Eckert[2003] who examine weekly market prices across Canadian
retail gasoline markets, some of which cycle and others of which do not. However, these studies, discussed
in the literature review, have two important limitations. First, the weekly spot-average nature of the data
obscures the finer cycle details and makes it impossible to test a central structural prediction of the theory.
The theory states that the full height of the cycle at a particular station should be achieved in a single price

increase and then be followed by a consecutive sequence of small price decreases.

(figure 1 about here)

Second, the theory of Edgeworth Cycles makes specific predictions about large and small firm behavior
and how those behaviors differentially evolve along the path of the cycle. The three main behavioral predic-
tions made by the theory are: (1) firm reactions are very fast but not simultaneous, (2) small firms tend to
lead prices downwards, and (3) large firms tend to lead prices upwards. The market level data used in these
studies cannot test these predictions of the Edgeworth Cycle model.

With high-frequency, station-specific data, however, one can. In this article, I present a new dataset of
twelve-hourly retail gasoline prices for 22 service stations in the city of Toronto over 131 consecutive days in
2001. I chose Toronto in part because conversations with industry insiders suggest cycles are fastest there.
In Figure 1, I show the twelve-hourly price series for a representative station operated by a major integrated
firm and one operated by an independent firm over the sample.! While the asymmetric cycle is clear in retail
prices, there is not one in the wholesale (‘rack’) price.

Using a Markov switching regression model, adapted from Cosslett & Lee[1985] and Ellison[1994], I briefly
parameterize and estimate average or ‘typical’ cycle characteristics. In support of the structural prediction

of the theory, I find that each station tends to increase its price by the full height of the cycle in a single



jump but lowers its price in small amounts over four to ten days. At first glance, stations also appear to act
in close synchronicity.

The main exercise of this article is then to identify the competitive process driving the cycles and show it
is consistent with the theory of Edgeworth Cycles. I isolate the pricing behaviors of small independents and
large integrated firms and test the three behavioral predictions outlined above. I find support for each of
these predictions. The results are inconsistent with other hypotheses for the existence of asymmetric cycles,
such as shifting demand, asymmetric discounts from the rack price, changing station gasoline inventories, or
covert collusion.

In Section II, I discuss the theory and literature and in Section III, I present my empirical framework.
A short discussion of the data is in Section IV. In Section V, I report estimates to describe a typical retail
price cycle and in Section VI, I turn to a competitive analysis of large and small firms. Section VII contains

a discussion of competing hypotheses and Section VIII concludes.

II THEORY AND LITERATURE

The price cycles observed in Toronto and in other Canadian cities are very similar in appearance to the
theoretical ‘Edgeworth Cycles’ introduced by Edgeworth[1925] and formalized by Maskin & Tirole[1988].
Consider the following extension of the Maskin & Tirole[1988] model. Two infinitely-lived profit-maximizing
firms compete in a dynamic pricing game by alternately setting prices. Once set, the price for that firm is
fixed for two periods. Prices are chosen from a discrete price grid. Marginal cost, ¢, is also allowed to vary
over time, and is chosen by nature from a discrete cost grid under a uniform distribution for simplicity. Each

firm earns current period profits of
(1) W%(p%7ptzact) :Dz(pt17p§) * (pi _Ct)

where D’ is the demand for firm i.

The strategies of each firm are allowed to depend only on the payoff-relevant state in each period, i.e.
they are Markov. In this case, the state variables are the opponent’s price from the previous period and
current marginal cost. Let Firm 1’s value function, in a period in which it is the active price setter but prior

to learning current marginal cost, be
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and similar for Firm 2. The discount factor for Firm ¢ is §;. Each firm, when active, sets price to maximize
the present discounted value of its future profit stream, or V? without the outside expectation.

The Maskin & Tirole[1988] model can be recovered from this setup by setting §; = o2, ¢; = ¢ for all ¢
and D’ is the standard homogenous Bertrand demand function. The authors show two different types of
equilibria are possible: focal price equilibria and ‘Edgeworth Cycle’ equilibria. In an Edgeworth Cycle, firms
repeatedly undercut one another to steal the market (the ‘undercutting phase’), until price reaches marginal
cost. At that point, a war of attrition ensues with each firm mixing between raising price and remaining at

marginal cost.
(figure 2 about here)

While the length of the undercutting phase is not certain, the length of the ‘relenting phase’ is. The price
increases at a given station in a single period, before undercutting starts again. The model thus predicts
a clear asymmetric shape (the structural prediction) and extremely fast but not simultaneous reactions
(behavioral prediction (1)). The model does not make a clear prediction about amplitudes, however. The
top of the cycle price may be above or below the monopoly prices and many amplitudes are possible in
equilibrium. An example of an Edgeworth Cycle for two symmetric firms is shown in Figure 2.

Eckert[2003] extends the Maskin & Tirole analysis to allow for firms of different size. While maintaining
the assumptions that §; = 62 and ¢; = ¢, the author models D? as standard Bertrand except that firms split
the market unequally at equal prices. The author shows that the smaller firm (with the lower equal-price
market share) has a greater incentive to undercut from equal prices. That is, the small firm leads the large
firm down the cycle (behavioral prediction (2)). Conversely, for reasonable parameter values, the large firm
is more likely than the small firm to increase price back to the top of the cycle. Noel[2004b] further argues
that coordination problems make large firms (who control the price for many stations) more natural and
effective leaders in price relenting (behavioral prediction (3)). I test these predictions against the data.

It is important to note that Edgeworth Cycles are not restricted to homogeneous Bertrand. Noel[2004D]
simulates the model above with fluctuating marginal costs and a variety of demand functions D?, including

spatially differentiated markets. The author shows that Edgeworth Cycles are an equilibrium in such markets



provided the differentiation is relatively small. The nature of the cycles is similar to that of the homogenous
case and in particular the structural and behavioral predictions continue to hold.?

Finally, the assumption of alternating moves, on which the theoretical cycles depend, appears to be
consistent with industry practice in gasoline markets. Discussions with regional managers suggest firms
monitor competitor prices (easily visible on large billboards) periodically and adjust prices in response. I
note that although search costs and menu costs are small, they are positive and determine the frequency of
search and price change. Throughout, I take this period to be exogenous and the same for both types of firms.
I return to the possibility that different menu costs or search costs may be responsible for generating the
cycles when I discuss competing hypotheses below. Lastly, because each firm changes prices after observing

its competitors, alternating moves also appears a reasonable description of behavior.

While articles on retail gasoline competition are many,? few papers have specifically addressed asymmetric
price cycles of this nature. For the United States, Allvine & Peterson[1974] and Castanias & Johnson[1993]
note the Edgeworth-like appearance of the cycles in Los Angeles from 1968 to 1972, and present summary
statistics on price changes. Eckert[2002] shows how asymmetric cycles similar to Edgeworth Cycles can lead
to a finding that price increases are passed through to retail prices more quickly than decreases using weekly
data from Windsor, Canada.

Two papers directly examine the impact of small independents on asymmetric prices in testing for Edge-
worth Cycles. Using national data for Canada, Eckert[2003] motivates his theoretical model (described
above) with interesting correlations between overall price rigidity and year-end concentration ratios for 19
cities and 6 years. The author finds more rigid prices where concentration ratios are higher.

Noel[2004a] explicitly models three distinct pricing patterns in Canadian markets — cycles, sticky pricing,
and cost-based pricing in 19 cities over 11 years. The author finds price cycles are more prevalent with more
small firms, sticky prices less prevalent, and the cycles have shorter periods, greater amplitudes, and are less
asymmetric. These relationships are consistent with the theories of Edgeworth Cycles.

As mentioned, the two limitations of these articles are the weekly frequency and lack of station-specificity
in the data. First, cycles (and fast cycles especially) can be partially obscured. For example, if the observation
for that week is collected in the middle of a marketwide relent, the recorded price will be an average of some
stations that have relented and others that have not. The duration of the relenting phase will be measured
at two weeks (contrary to the structural prediction of the theory). Since undercutting just before and just
after the relenting phase are also missed, the measured amplitude is underestimated and asymmetry can be

difficult to detect. The second limitation of these articles is that one cannot directly observe the pricing



behavior of individual small and large firms which is needed to test the behavioral predictions of the theory.
The current dataset, however, is twelve-hourly and station specific, and permits tests of both the structural

and behavioral hypotheses of Edgeworth Cycles.*

IIT EMPIRICAL FRAMEWORK
For a particular station, two possible pricing regimes are clearly suggested by both the theory and the data:

1. the relenting phase (regime ‘R’), and

2. the undercutting phase (regime ‘U’)

with discrete switching between the two.

The nature of the theoretical Edgeworth Cycles is that the regimes for a particular station are correlated
over time. Undercutting phases tend to persist for many consecutive periods while relenting phases tend
to last a single period. The current regime thus carries information about the likelihood of the regime
in the following period. Therefore I model firm behavior using a two-regime Markov switching regression
framework. (A regular switching model does not have this memory feature.)

Also, a latent regime switching framework is appropriate since the true underlying regime at a point in
time is unobservable. Price movements in different regimes can in principle look identical. For example,
a zero price change or small price increase (decrease) by a station may still be considered a part of its
undercutting phase (relenting phase) depending on the estimated switching probabilities and past play.

The cycle is likely clean enough in the new dataset that one could get some similar results by sepa-
rately analyzing price increases and price decreases or by using a regular switching regression. If measuring
characteristics were the only concern (which is not the case here), one might even attempt to eyeball the
data. However, the Markov switching regression framework is preferable for several reasons. First, it is more
general and I show how it can be used to analyze cycle characteristics with data that is not so clean. Second,
it is less ad hoc: no assumptions need be made about how to categorize, for example, zero price changes or
small price increases in the middle of extended periods of price decreases. Imposing minimum or maximum
cutoffs for inclusion into a particular regime would otherwise produce estimates influenced by subjective
categorization. Third, since it directly estimates the probability of switching between regimes, I can derive
intuitive formulae for the characteristics of the cycle and easily allow those characteristics to covary with

variables of interest, all within a single specification.



Consider a station s at time ¢ which is operating under regime i. I assume that the firm who operates

station s sets its retail price according to the function

@ ARETAIL.. — X3 4 €, with prob. 1 —~%,
st —
0 with prob. %,

where ARETAILy = RETAILyy — RETAILg— 1 and RETAILg is the retail price, (Xit)/ isan K x 1
vector of explanatory variables, 3 is a K% x 1 vector of parameters and gl, is a normally distributed error
term with mean zero and variance o?. Let o' = E(ARETAILg | X%,).> Regimes are station specific so, in
principle, each station can follow a cycle of its own.

Because menu costs and monitoring costs are not exactly zero, a period t is of positive and finite length.
Moreover, the ‘true’ length of a period ¢ as determined by gasoline stations is unlikely to be identical to
the length of a period chosen by the econometrician when collecting data (in this case, twelve hours). The
true length of a period ¢ may even differ across stations. If the time between datapoints is sufficiently short,
one will necessarily observe some zero price changes from one data point to the next even if firms were
undercutting every ‘true’ period. Eckert[2003] and Noel[2004b] further show that asymmetric firms may
price match instead of undercut in response to certain prices, producing more zero price changes. I include
a mass point in each regime at zero to account for this. Separating the zeros from the nonzeros allows me
to analyze both the actual size of undercuts when they do occur as well as unconditional expected price
changes each period.

The regime specifications are built identically and no restrictions are placed on the sign of the price
change for inclusion in a given regime. I simply name the regime in which I find prices to rise quickly the
‘relenting phase’, and the other the ‘undercutting phase’. Particulars of each within-regime specification are

discussed together with results in later sections.

(figure 3 about here)

There are four Markov switching probabilities in total. Let I be equal to ‘R’ and ‘U’ when station s at

time ¢ is in the relenting phase regime and the undercutting phase regime respectively. Then the probability



that a station switches from regime i in period ¢t — 1 to regime ‘R’ in period ¢ is given by the logit form:

(5) AN = Pr(ly=‘R| Ly =1,Wi)
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1+ exp(WE0")’ ’

and )\’s[t] =1- )\if, i = R, U to satisfy the adding up constraint. Let Ay be the 2 x 2 switching probability
matrix whose ij'" element is A, Each (W7, is an L’ x 1 vector of explanatory variables that affects the
switching probabilities out of regime i and 6 is an L’ x 1 vector of parameters. Particular specifications
discussed below.

In addition, let J!, be the indicator function equal to 1 when, conditional on operating under regime 4,
the price at that station does not change. Then the probability that the station’s price will not change in
any given period, conditional on regime i, is modeled as the logit probability:

(6) Pr(J;t =1]1Iy= iavsit) = VQt = M
1+ exp(V (")
where (Vi) is a Q' x 1 vector of explanatory variables and ¢’ is an Q% x 1 vector of parameters.

Figure 3 outlines the structure of the model.

The core model parameters (ﬁi, 0, {i) in each specification are simultaneously estimated by the method
of maximum likelihood. Numerical methods are used to calculate robust Newey-West standard errors on
the core estimates. The switching probabilities are estimated by joint non-linear transformations of the
core parameters. The switching probabilities and the within-regime estimates are then used to construct the
structural characteristics of the cycle such as amplitude, period, and asymmetry. The appendix outlines these
derivations in more detail. Standard errors on the constructed variables are calculated by the multivariate

delta method.

(figure 4 about here)

IV DATA

I collect and use a new dataset of twelve-hourly retail prices for the same 22 service stations along an
assortment of major city routes in central and eastern Toronto over 131 consecutive days between February

12" and June 227¢ 2001. The stations I surveyed are a representative mix of large major national and



regional firms and smaller independent firms. Thirteen of the stations surveyed are operated by major
national or regional firms (integrated into wholesaling and retailing), nine by independents.® Twelve firms
are represented in total including all major national and regional firms. Figure 4 shows a map of all gasoline
stations in central and eastern Toronto. The sample stations, spread out over 17 miles, are marked by dark
squares.

Retail prices, RET AI Ly, are for regular unleaded, 87 octane, self-serve gasoline, in Canadian cents per
liter (cpl). The descriptive specifications of Section V use after-tax prices (since firms compete on these);
the behavioral specifications of Section VI use tax-exclusive prices (relevant for profit margins.) Taxes are

almost entirely lump sum and results are unaffected by this choice.

(table I about here)

The wholesale price I use is the daily spot rack price for the largest wholesaler at the Toronto rack
point, RACK,,, as collected and reported by MacMinn Petroleum Advisory Service.” There can be small
discounts from this listed price but such discounts are not tied to movements in the retail price. Although
only independents buy at rack, the rack price is appropriate since it represents the wholesaler’s opportunity
cost of wholesale gasoline sold to dealers. Because of readily available U.S. sources of wholesale gasoline, the
rack price can be reasonably modeled as exogenous to retail price setting (Hendricks[1996]).

Ancillary data such as firm and station characteristics, source of price control and timing of inventory
deliveries were self-collected.

Summary statistics for rack and retail prices are shown in Table I. The US$/gallon price equivalents are

US$1.08/gallon before tax, US$1.78/gallon after tax, and an average rack-retail markup of US$0.08/gallon.

(table II about here)

(table IIT about here)

V DESCRIPTION OF THE CYCLE

The main results of this paper are presented in Section VI, when I test the behaviors of small and large firms
against predictions of the theory. In this section, I test the structural prediction of the theory and briefly

describe the anatomy of a typical cycle — that is, its average amplitude, period, and asymmetry. This is done



using a ‘summary statistics’ specification (specification (1)) in which the within-regime price changes (a?),
switching probabilities (\) and probabilities of sticky pricing conditional on being in regime i, (7%), are
assumed constant. That is each X?, W and V? are vectors of ones. Specification (2) repeats the analysis
after including dummies for station type (independent and major).

In Table II, I review the within-regime regression results and switching probabilities estimates. These are
used to derive the typical structural characteristics of the cycle, as described in the appendix, and reported
in Table III.

The evidence supports the structural prediction of the theory that the relenting phase of a given station
is complete in a single period followed by a sequence of small consecutive undercuts. The average relenting
phase lasts 1.01 half-days and the undercutting phase lasts 12.78 half-days. The expected period of the cycle
is therefore 13.78 half-days, or about a week.® I find the expected amplitude of the cycles is 5.61 cpl, 13%
of the average ex-tax price, 170% of the average markup, and 364% of the average retail markup just prior
to a relenting phase. One-time price increases of 10 cents per liter (equivalent to 24.5 US cents per gallon)
were common in the sample. Finally, the cycle is extremely asymmetric. Using the ratio of the undercutting
phase duration to the relenting phase duration as a measure of asymmetry, the point estimate of 12.68 is
highly significant.

In specification (2), I find virtually identical cycle periods and asymmetries across types of stations,
while amplitudes differ. This does not show synchronicity, but suggests a potentially strong interdependence

between majors and independents.

V1 SMALL VS. LARGE FIRMS

The theory of Edgeworth Cycles makes specific behavioral predictions about how large and small firms
interact and how their pricing behaviors differentially evolve over the path of the cycle. In particular: (1)
reactions should be fast so that cycles across stations appear highly synchronous, (2) small firms should lead
prices downward and (3) large firms should lead prices upward. The high-frequency, station-specific data
used in this study allows a clean test of these behavioral predictions of the model.

I allow for changing behavior along the path of the cycle using two key variables: POSITION and
FOLLOW, described below. Also, because I want to test for differential effects by firm size (major or
independent), T interact each of these variables by firm size where they enter the model.

Define POSITION as the difference between the lagged retail price and the current rack price, less taxes,

RETAIL,; 1 — RACKy —TAX,. This is intended as a measure of the position of a station’s ex-tax price
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relative to the bottom of its cycle (approximated by marginal cost). Since I want to test for changes in the
aggressiveness of a firm’s pricing strategy based on its stations’ position within the cycle (and differentially
by firm size), I allow the expected price change in each regime (a') and the probability of sticky pricing in
the undercutting phase (vY) to vary with POSITION.? This is done by including POSITION in the X ?,

XU, and VU matrices.

(table IV about here)

Changes in POSITION also influence regime change. As a given station nears the bottom of its cycle,
one expects an increasing probability that a firm will switch a station out of its undercutting phase and
into its relenting phase. Thus I include POSITION in the switching probability out of the undercutting
phase (AY® via WU). 1 do not include it in the switching probabilities out of the relenting phase since
two consecutive periods of relenting are extremely rare in the data ()\RR ~ 0). For examples of switching
probabilities out of the undercutting phase at various levels of POSITION, see Table IV. The examples are
based on a specification identical to specification (2) but that includes POSITION in X XU VU and
WUY. The example shown is for major firms although that for independents is similar.'® As seen in Table
IV, the probability of switching from undercutting to relenting ramps up quickly as POSITION falls.

The dummy variable FOLLOW is intended to capture differential behavior of large and small firms in
the transition from undercutting to relenting. I am interested both in how large and small firms self-select
into roles as leaders and followers in cycle resetting and also how their behaviors differ conditional on their
roles. Let FOLLOW4 be equal to one in period ¢ if some other station has already relented as of the
previous period but station s still has not. Since all stations relent each time and relenting rounds are well
separated, this variable is easily constructed.'’ Once all have relented, FOLLOW is set back to zero for
every station. Since I test for differences in the aggressiveness of pricing strategies at the very bottom of
the cycle, I allow the probability of switching from undercutting to relenting (/\UR) and the expected price

change in the subsequent relenting phase (a*') to depend on FOLLOW.

(table V about here)

The results, described below, are reported as specification (4) in Table V. In the specification, X and

WY include variables MAJOR, FOLLOW , POSITION, MAJOR+ FOLLOW , MAJOR+ POSITION,
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XU and VY include variables MAJOR, POSITION, MAJOR x« POSITION, and W and V% include
only MAJOR and the constant term.

Assume I have already shown behavioral prediction (1) that cycles for each station are highly synchronous
and assume now all stations are together at the tops of their respective cycles. From this point, the theory
of Edgeworth Cycles suggests that smaller firms have a greater incentive to initiate a new round of price
undercutting than larger firms. A finding that more active undercutting by smaller firms occurs near the
tops of the cycles would be consistent with the theory.

In the top half of table V, I report partial derivatives of the expected price changes (o) and the probability
of sticky prices during undercutting phases (yV) with respect to POSITION, and of the expected relenting
phase price change with respect to FOLLOW . Each is reported separately for small (independents) and
large (major) firms.

Behavioral prediction (2) is borne out by the data. As predicted, small firms are more aggressive near
the top of their cycles and more likely to trigger new rounds of undercutting. Near the top of the cycles,
actual price undercutting (of any size) is substantially more prevalent among the small independents while
sticky prices are more prevalent with large major branded firms. Nearer to the bottom, the roles reverse
and we see that undercuts are more common with large major firms and sticky prices more common with
small independents (ap_gggfqé?ﬁ = 0.036, ap—(‘%}%ﬂ[m = —0.034). Each estimate is significantly different
from zero as well as from each other.

This shows that small independents are more likely to initiate new undercutting phases. Large major
firms try to support higher top-of-the-cycle prices for awhile but ultimately chase small firms downwards as
the price gap between them grows too large. As independents continue to undercut major firms and each
other, however, the majors respond. In fact, just prior to a new round of relenting, the prices at majors are
often below those of the independents.

The undercuts when they do occur are slightly larger at the top of the cycle than at the bottom

( 8a¥

3POSIFTON ). For majors, this appears due to the first undercut from the top of the cycle; for independents,

the effect is insignificant.

Behavioral prediction (3) states that larger firms have a greater incentive and greater coordinating ability
to trigger a new round of relenting phases once markups become low. Behavioral prediction (1) is that
reactions by other firms are so fast that the cycles across stations should appear closely synchronous. If we
observe earlier relenting activity by larger firms near the bottom of the cycle that is followed very quickly

with relenting activity by smaller firms, it would be consistent with Edgeworth Cycles.
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In the bottom half of table V, I calculate and report estimated switching probabilities (A*) by firm size
and by FOLLOW status for several relevant values of POSITION. This presentation will be more intuitive
to the reader than reporting the partials that underlie them. T consider POSITION = 1.53, the average
value prior to a relent, and POSITION = 0, commonly reached in the data.

At time t, a ‘follower’ is simply a station whose FOLLOW dummy flag is on — that is, it has not yet
relented but at least one other station has and a marketwide return to higher prices is underway. A ‘leader’
is a station whose FOLLOW dummy is off — no station had just relented and each is still a potential leader
in terms of cycle resetting. Note that because reaction times are so fast, I generally identify a leading group
of stations rather than a single leading station, even with twelve-hourly data.

Behavioral prediction (3) — that larger firms are more likely than smaller ones to initiate new rounds of
relenting phases — is also confirmed by the data. Consider the switching probabilities at POSITION =
1.53 and examine first the LEADFE R columns. Conditional on no station having yet relented, the probability
that a large major firm will switch a station into its relenting phase in the current period is 9.1%. The
corresponding value for a small independent is only 2.6%. The estimates are statistically different from each
other at better than the 1% level of significance. This evidence shows that large firms are much more likely
to initiate price relenting than small firms.

Next consider the FOLLOW ER columns. Conditional on at least one station having relented in the
previous period, the probability that a large major will switch a station into a relenting phase in the current
period is 93%. The corresponding value for a small independent is 72%. These estimates translate into two
more important results.

First, the probabilities are high. This confirms behavioral prediction (1): firms large and small respond
extremely quickly to a new relenting phase of another station by relenting themselves, usually within half a
day. The price increases across the city appear to be highly synchronous. Had the data been just bi-daily
or less frequent, stations would have appeared to be pricing in perfect synchronicity.

Second, the estimate for majors is statistically and significantly greater than that for independents at
much better than the 1% level. Since all follower stations eventually relent during each round, the estimates
show that majors react more quickly to a relent by a leading station than do independents. Independents
occasionally delay more than one twelve-hour period (28% probability), but it is rare for a major to do so
(7%).

The insight gained from the case when POSITION reaches zero is the same. These results are consistent
with the existence of Edgeworth Cycles in the Toronto retail gasoline market.

Two more results are worth noting. First, the theory predicts that a following firm will set its price just
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below that of the leader, effectively making the first undercut. I find evidence of this effect. Near the top of
the table, I report that a major firm who follows tends to raise price by 0.2 cents less than if it had led. The
corresponding effect for independents is insignificant, likely because independents tend to all be followers
even though the fastest ones make it into the leading group.

Finally, I find that a station’s price change during a relenting phase will indeed be greater the closer it

had been to the bottom of the cycle. The coefficient on o for majors and independents are fairly close

R R
to one (ﬁg% = —0.91, Wg%% = —0.87), suggesting that an almost standard markup reinstated

each time. Since it is less than one, however, amplitudes become slightly smaller when POSITION is lower,
for example, due to an increase in wholesale prices.

While the theory states that the top of the cycle price may be either above or below the monopoly price,
it appears in these markets to be below given typical estimates of aggregate elasticity. It is an interesting
question then why firms would limit themselves to this amplitude rather than attempt greater ones. One
possibility is consumers’ intertemporal elasticity of substitution. If consumers would respond to any greater
amplitudes by investing in learning how to time their purchases to only periods of low prices (at a cost), it
would undo any attempt by firms to increase the amplitude even further.

It seems that few consumers have made the investment in learning about the cycle. In an informal poll
conducted of 58 people living in neighborhoods near the sample stations in June 2001, the average respondent
believed that a station’s price would change about once a day. Conditional on changing, it was believed on
average 58% were price increases. In the actual sample, prices do change about once a day but of those 86%
are price decreases. The misperception may be because the large, seemingly simultaneous price increases
(especially those resulting in all-time high nominal prices during the sample period) receive much negative
press, while the small undercuts each day receive no fanfare at all.

The welfare implication is that better informing consumers about the current cycle (or in other ways
lowering their intertemporal substitution costs) may reduce amplitudes and prices even further.

Although the sample stations in this study are geographically spread out over 17 miles, to check their
representativeness I also periodically sampled 26 stations in other parts of the city during data collection.
I confirm that prices at all these stations moved closely together. The median pairwise price difference
between any two stations anywhere in the city was under 0.4 cents and a difference of more than three cents
occurred in less than one quarter of one percent of pairwise comparisons.'> Moreover, every sampled station
participated in the cycle. I conclude that the results herein are representative of the city as a whole and
support the existence of a single market.

The marketwide nature of the cycle may be surprising. Transportation costs imply some spatial differen-
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tiation across stations, but the presence of Edgeworth Cycles would suggest that the differentiation between
stations is very low.!® The fact that prices are highly correlated (independent of marginal cost) even across
distant stations argue that stations are well connected to each other by a chain of competing stations in
between. As mentioned earlier, major firms may also contribute to the near marketwide synchronicity of the

relenting phases by coordinating across its stations.

VII COMPETING HYPOTHESES

Another advantage of the twelve-hourly station-specific data is that one can more clearly distinguish between
Edgeworth Cycles and several competing hypotheses that might explain the asymmetry in prices. In this
section, I discuss day-of-the-week demand cycles, menu costs, inventories, rack price discounts and covert
collusion as possible alternative explanations.

One competing hypothesis for the cycles focuses on fluctuating demand. That the period of a cycle is
about a week long suggests that a day-of-the-week demand cycle may be involved. However, this hypothesis
is quickly dispelled. First, it is implausible that gasoline demand would follow the exact pattern consistent
with the structural prediction of the theory — a large sudden increase in gasoline demand on one day of the
week followed by small decreases in demand every subsequent day. Moreover, the price increase occurs on
a different day of the week from one week to the next, and cycle periods range from 4 to 10 days in the
sample period (on rare occasion two in the same week). This is inconsistent with a day-of-the-week demand
pattern.'* Also, a demand story does not suggest differential behavior by large and small firms in leading
relenting and undercutting phases, as occurs in the data.

It is sensible, though, that varying weekly demand may fine tune the exact timing of the relenting phase
in a cycle that would be roughly a week in length anyway. To check this, I performed theoretical simulations
in which demand was allowed to fluctuate. Demand could be either high or low in each period (with equal
probability) and the active firm learns current demand just prior to setting price. The results show that
firms are more likely to relent in the low demand period when the cost of relenting is relatively lower. There
is some supporting evidence in the data that relents are more likely to be earlier than later in the week.!
Quantity data would be needed to say more.

However, I do not find evidence of the often claimed ‘long weekend effect’ — that is, firms raising prices
higher specifically for the long weekend. This is in contrast to a government study which claims to have
found one and cites it as evidence of non-competitive behavior.'® The relenting phases that occur in the

week prior to the long weekend are not exceptional, and (although the number of long weekends is small),
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do not appear to be any later in the week in general.

Differences in menu costs or monitoring costs may be suggested as a second alternative explanation for
the differential behaviors found along the cycle. The fact that majors change their prices slightly (albeit
insignificantly) more often (1 — Y, 4, = 0.58,1 — 7Yy, = 0.56) may be suggestive of lower menu and moni-
toring costs for large firms. Differences in these costs themselves cannot create such a tall and structurally
asymmetric cycle. However, even if the cycle was due to some other reason, such as a demand cycle, cost
differences cannot explain differential firm behavior. If large firms had lower costs, one would expect them
to adjust more quickly in both the upward and downward direction, not only in the upward direction as I
find.

A third explanation for the cycle is the depletion of the inventories in the underground tanks at retail
stations. For simplicity, assume an exogenous delivery schedule and an effort by stations to exactly deplete
inventory prior to the next delivery.!” Then if a station’s sales are lower than expected, inventories do not as
fall much as expected, and its price decreases in the next period. However, to decrease repeatedly as in an
Edgeworth Cycle, stations would have to repeatedly overestimate its sales in every single period including the
period when it chooses its relenting price. If, on the other hand, stations underestimate sales in every single
period, one would observe the opposite asymmetry of what I find. Worse than myopia, station managers
would need to be perpetually unaware of both the future and the past and systematically err in a precise
way.

In practice, gasoline inventories at stations are not scarce and the shadow price of any capacity constraint
should be low. Delivery schedules are endogenously set to each station’s requirements and extra supply can
be readily obtained if needed. Changes in the costs or benefits of holding excess inventory cannot explain a
four fold change in markups over a the course of a week, let alone its asymmetry.

Nor is the inventory story consistent with behavioral prediction (1) that reactions are fast and cycles
across stations appear highly synchronous. Since deliveries occur on different days for different stations (and
is typically less frequent than a week), one would expect any ‘cycles’ under an inventory story to be longer
and largely independent across stations. The data shows they are not.

A fourth possibility is that discounts off the posted rack price, unobserved to the econometrician, create a
rack price cycle that accounts for the retail price cycles. However, rack price discounts are much smaller than
the amplitude of the cycle (<1 cpl versus 5.6 cpl). While they vary by volume purchased, they do not vary
over time as required for a cycle. Wholesale supplies are also bought less frequently than the cycle period
and they are bought at different times by different stations. (It would also seem strange that a wholesaler

would symmetrically change its posted rack prices over time while asymmetrically adjusting any discounts.)
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Again, this hypothesis cannot explain the differential large and small firm behaviors along the cycle. I note
that had there been a rack price cycle instead, it would be just as interesting.

Fifth and finally, consumer groups often cite covert collusion as the cause for what is claimed to be
synchronous price movements. This has led to periodic federal investigations in search for evidence of
collusion, to date without success.'® Because the folk theorem teaches there are an infinite number of
possible equilibria in supergames with sufficiently high discount factors, collusion can never be fully ruled out.
However, it is extremely unlikely that the cyclical path of prices we observe (which happen to well resemble
Edgeworth Cycles) would be the choice of firms colluding under supergame strategies. The most effective
collusion strategies in practice are those that are simple to reach, monitor, and punish. Constant price or
constant markup rules are examples. These simple strategies involve a minimum of explicit communication
and reduce the risk that firms will draw suspicion from antitrust authorities. In contrast, setting up and
policing a complicated system of differentially and fast moving prices among hundreds of stations would be
very difficult and require plenty of explicit communication. It is also unnecessary. As shown above, there
is no evidence of a cost or demand cycle that would suggest any benefit from attempting a complicated
cyclical equilibrium instead of a simple one. Moreover, since complaints are often triggered by the large
(25%) market price increases in the relenting phase, the cycle would seem a particularly peculiar choice for
secretly colluding firms.

Perhaps the leading candidate of all the folk theorem strategies is that firms select and follow a price
leader. The price leader would be free to adjust prices as market conditions dictate and other firms are then
required to follow. However, the data shows there is no one price leader in the data. One of several different
firms may lead prices back to the top of the cycle each time. When undercutting, many different individual
firms lead prices lower and the price ranking of stations change frequently and unsystematically along the
path. These are inconsistent with a simple organizational structure based on a price leader. Even had there
been a single price leader, again, the complicated cyclical price pattern we observe would have be a peculiar

choice, given no underlying cost or demand cycle to motivate it.

VIII CONCLUSION

In this paper, I present a new dataset to examine pricing dynamics in the Toronto retail gasoline market. I
find evidence consistent with the presence of Edgeworth Cycles, a theoretical construct seemingly implausible
in real world practice. The asymmetric shape of the empirical cycle is clear. Consistent with the theory,

I find that larger firms are more likely than smaller firms to initiate new rounds of relenting phases and
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the opposite is true for undercutting phases. The magnitude of relenting phase price increase is sensitive
to changes in cycle position and expected future costs. Reactions of following firms are very fast, and the
larger the firm the faster is the reaction. The cycles also appear highly synchronous across stations. These
results are inconsistent with competing explanations for the cycle such as covert collusion and inventory or
demand cycles.

The result is interesting in a number of ways. Unlike traditional, periodic price wars which are often seen
to facilitate collusion, the ‘price wars’ here are not punishments triggered by colluding firms. Rather, the
competitive outcome involves prices that fall repeatedly and to some extent predictably. Elastic consumers
can achieve lower average prices by investing in learning the cycle process and timing purchases accordingly.
Coasian dynamics may result to lower prices more broadly. It also shows a leading role for small firms in
triggering the undercutting phases that lower prices.

The results contradict the assumption of a single long run steady state price made in most papers of
gasoline pricing dynamics in these markets. Although Edgeworth Cycles do not currently appear in U.S.
gasoline markets, empirical researchers working in markets with similar characteristics need consider the
potential for this sort of pricing dynamics in their estimation. Where else Edgeworth Cycles appears remains

to be seen.

APPENDIX

There are two top-level regimes: Iy = ‘R’,‘U’. Each is subdivided into subregimes J,,; = {0,1} for non-
sticky and sticky pricing respectively. The closed form log likelihood function for the Markov switching
model is computationally intractable and so is computed by means of a recurrence relation, as described by

Cosslett & Lee [1985]. Let

(7) Qut(le) = Y gh(egit | X5t Vi) # Pr(lat | Loom1, Wig*) % Qup1 (s p-1)
Is¢ 1=R,U
where
gl (el | X5 Ve = Pr(Ja=0] Vi) = o(elst | XEt)
(8) + Pr(Jy = 1| Vir') * D(pst — ps,—1)
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and where ¢ is the normal pdf, D(z) is an indicator variable equal to 1 if x = 0, and Qs;1(Is1) are chosen
starting within-regime probabilities. Note that Pr(Iy = j | I, 1 =) is called A\¥ and Pr(Jy = 1| VEA*) is

called 7* in the text. Then the likelihood function is computed by

S T
(9) L=Y>"In| > Qull)

Results are not sensitive to starting values and, given the crispness of the data, converged easily.
The structural characteristics of the cycles are calculated directly from the switching probabilities and

the within-regime parameters as follows:

(10) E(duration of regime i) = ] 1)\1‘1‘
. 1 1
(11) E(period) = [ FR + L

o (A—yMaf (1 -4l
(12) E(amplitude) = N (or L )
1 _ RR _ 1 _ R R
(13) E(asymmetry) = A 1=7%)a

1- 2\ (or (1—7U)04U)

In the text, the first equation of each pair is used for the amplitude and asymmetry measures.
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NOTES

I Taxes have been removed. There are excise taxes of 24.7 Canadian cents per liter (cpl) and a sales tax of 7%.

2The structural prediction and behavioral predictions (1) and (2) are robust to starting values used in the simulations.
Behavioral prediction (3) can vary depending on starting values, both in the homogeneous and differentiated cases. To allow
for greater coordination ability by the large firm, one simply starts off their V?(p) at lower values for low p. Doing so supports

behavioral prediction (3).

3 Articles on retail gasoline competition include: testing oligopoly models of competition and episodic price wars (Slade[1987],
Slade[1992]), wholesale-retail passthrough (Borenstein, Cameron & Gilbert[1997], Godby et. al[2000], and many others), mergers
(Hastings & Gilbert[2006]), collusion (Borenstein & Shepard[1996]), and multiproduct station pricing (Shepard[1991]).

4 Although the cycles in Toronto are difficult to detect in weekly data (and their characteristics obscured), Noel[2004a] is
able to find cycles in 84% of weeks overall (and in more than 98% of weeks in five of the last seven years in the data) using

weekly data for Toronto from 1989 to 1999.

5Rather than first price differences on the LHS, one can model the relenting phase using a price level on the left hand side

and the rack price on the right hand side all with similar results.

SMajors are defined as those that are integrated into refining and retailing, independents are retailers only. Major firms
generally have a much larger retail presence than independents. Although majors can choose to lease some stations to private
dealers, in urban areas and for all major-branded stations in the sample, the head office controls prices. Hence, definitions of

“large” and “small” are meaningful.

7 A single wholesale price was used to ensure averages did not mask large jumps in the wholesale price. There is no substantive

difference between using a firm-specific rack prices or daily spot averages.
8Possible day-of-the-week effects discussed in Section VII.

9Previous specifications show sticky prices are effectively non-existent in relenting phases.

10The partial derivative of the switching probability from U to R with respect to POSITION is calculated by % =

U UR , \UU
OPosrTron ¥ A7 T E AT

117 also estimated the model using the number or fraction of firms who have previously relented (simple or weighted according
to distance or discounted over time) and results are similar. It would be computationally infeasible to estimate a fully specified
state model where each station is in one of 222 states (depending on who has and has not yet relented). It is quite unlikely
that stations are concerned with the full distribution of which individual stations have and have not relented at a point in time,

however.

12Not including pairwise comparisons where one firm has already relented but the other has not. During the sample period,

3 cents per liter (Canadian) equals approximately 7.5 cents per gallon (US).

I3High firm-level price elasticity is an important factor. Imperial Oil Ltd. reports claim that many consumers do respond to

differences as low as 0.2 cents per liter. (Majors generally only price in odd decimals so 0.2 is the minimum undercut.) If this
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is true, perhaps additional utility is being gained from paying the lowest price, since savings would only be about a dime on
a fillup. My own anectodal evidence when collecting this data suggests that a difference of 1 cpl at two nearby stations (very

rare and very brief) has a large impact on consumer choice.
14Noel[2004a] shows in other cities, cycles have periods of several weeks or even several months.

15The probabilities for the first firm (generally a major) to relent are: Monday 18%, Tuesday 32%, Wednesday 22%, Thursday
18%, Friday 10%, weekends 0%. Industry activity is low on weekends, which may also explain why Friday appears a poor choice
to attempt to trigger a marketwide relent. Using all relents, the percentages are Monday 22%, Tuesday 37%, Wednesday 21%,
Thursday 13%, Friday 6%, weekends 1%. The empirical specifications do not include dummy variables for day-of-the-week.

Adding early/late week dummies does not impact the previous results.

16 Government of Canada[1998] in its review of the downstream industry expressed concern over the synchronicity and volatility
of retail gasoline prices. They consider the industry “tacitly collusive” and postulate a single price leader who moves prices

both higher and lower.

17Stations may hold some additional inventory for its option value in the event of a positive demand shock prior to the
next delivery date. Because station demand is relatively easy to forecast ten days into the future, this is likely to be a small

percentage of capacity.

18] note that the fineness of the data in this study shows the price increases are in fact not perfectly synchronous, but rather
a sequence of fast reactions. With data just bi-daily or less frequent data, they would have only appeared to be perfectly

simultaneous.
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Figure 1. Retail Prices (Major Firm, Independent Firm) and Rack Price
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Figure 2. Theoretical Edgeworth Cycle
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Firms are symmetric in this example with equal and constant marginal cost. The top of the cycle is at a price that may be above or
below the monopoly price. The bottom of the cycle is at marginal cost.



Figure 3. Schematic Overview of Regimes and Switching Probabilities
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Each large box represents a regime (relenting or undercutting) and each small box represents a subregime (price changes or sticky

prices). The switching probability out of regime i in period # into regime j in period #+7 is given by AY. The probability of sticky prices
conditional on regime i is given by 7.




Figure 4. Service Stations and Sampled Service Stations
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Table I. Summary Statistics

Mean Std.Dev. Minimum Maximum
RETAIL (before tax) 43.09 4.44 32.2 51.8
RETAIL (after tax) 72.53 4.75 60.9 81.9
RACK 39.77 4.00 33.5 46.0
POSITION 3.31 2.08 -3.2 7.6

In Canadian cents per liter. Note POSITION; = RETAIL;, , — RACK;,.

Table II. Within-Regime Results and Switching Probabilities

(1) (2)

All Firms Major Firms  Independents

Relenting Phase Estimates (dependent variable: ARET AILg)

a® (expected price change) 5.576 5.782 5.192
(0.083) (0.101) (0.142)
or (standard deviation of price change) 1.650 1.610 1.655
(0.066) (0.085) (0.100)
7B (fraction sticky prices) 4.0E-5 4.1E-5 3.8E-H
(4.6E-4) (4.8E-4) (4.9E-4)
Undercutting Phase Estimates (dependent variable: ARET AILg)
aV (expected price change) -0.751 -0.767 -0.720
(0.008) (0.010) (0.015)
oy (standard deviation of price change) 0.459 0.467 0.441
(0.009) (0.012) (0.012)
Y (fraction of sticky prices) 0.429 0.422 0.441
(0.007) (0.008) (0.014)
Switching Probabilities
M (relenting — relenting) 0.008 0.008 0.007
(0.004) (0.005) (0.007)
MY (relenting — undercutting) 0.992 0.992 0.993
(0.004) (0.005) (0.007)
AYE (undercutting — relenting) 0.078 0.078 0.078
(0.001) (0.002) (0.003)
AUV (undercutting — undercutting) 0.921 0.921 0.921
(0.001) (0.002) (0.003)

Specification (1) does not include firm type dummies. Specification (2) includes firm type
dummies in the o', A ;and, 7*. Standard errors in parentheses calculated by delta method.



Table ITI. Cycle Characteristics

0 2
All Firms Major Firms  Independents
Relenting Phase Duration 1.008 1.008 1.007
(0.004) (0.007) (0.007)
Undercutting Phase Duration 12.780 12.779 12.784
(0.291) (0.358) (0.484)
Cycle period 13.788 13.787 13.792
(0.291) (0.358) (0.485)
Asymmetry 12.680 12.677 12.687
(0.291) (0.363) (0.491)
Cycle Amplitude 5.619 5.828 5.232
(0.082) (0.098) (0.144)

Durations and period in terms of half-day periods, amplitude in cents per liter, measure of
asymmetry are unit free. Standard errors in parentheses calculated by the delta method.

Table IV. Effects of Cycle Position

(3)
Major Firms Independents
[o) N
3POSITION -0.065 -0.051
(0.006) (0.006)
Switching Probabilities at various values of POSITION
POSITION = 3.31 1.53 0 -3.24
mean value mean value minimum
overall bottom of cycle value
AU 0.046 0.110 0.272 0.803
(undercutting — relenting) (0.002) (0.006) (0.022) (0.038)
AU 0.953 0.889 0.727 0.197
(undercutting — undercutting) (0.002) (0.006) (0.022) (0.038)

Specification (3) adds to specification (2) by allowing POSITION to impact the within-
regime expected price changes (aR and aU), the switching probabilities out of the
undercutting phase ()\UR and )\UU), and the probability of sticky pricing in the
undercutting phase (Y”). The reported derivative NV /OPOSITION (the change in
the probability of switching from undercutting to relenting with respect to POSITION)
is evaluated at POSTTION = 1.53, its mean value at the bottom of the cycle. Other
parameter estimates are similar to specification (2) and not reported. Standard errors in
parentheses calculated by the delta method.



Table V. Leaders and Followers

(4)

Major Firms Independents
SR -0.200 0.084
(0.104) (0.096)
dalt
BPOSITION -0.897 -0.873
(0.027) (0.061)
aU
SPOSTTOR -0.042 -0.034
(0.007) (0.027)
F) U
SPOSYTION 0.036 -0.034
(0.002) (0.005)
Switching Probabilities at POSITION = 1.53
LEADERS FOLLOWERS
Majors Independents Majors  Independents
AV 0.091 0.026 0.925 0.720
(undercutting — relenting) (0.006) (0.003) (0.045) (0.045)
AUV 0.919 0.974 0.075 0.280
(undercutting — undercutting) (0.006) (0.003) (0.045) (0.045)
Switching Probabilities at POSITION = 0
LEADERS FOLLOWERS
Majors Independents Majors  Independents
AV 0.235 0.066 0.974 0.868
(undercutting — relenting) (0.020) (0.011) (0.016) (0.030)
Y 0.765 0.934 0.026 0.132
(undercutting — undercutting) (0.020) (0.011) (0.004) (0.030)

Expected price change in regime i (conditional on a positive price change) is o’. The
probability of sticky pricing conditional on regime U is yV. The switching probability from
regime i to regime j is A". Standard errors in parentheses calculated by the delta method.



