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Abstract

Strategic patenting is widely believed to raise the costs of innovating, especially in industries
characterised by cumulative innovation. This paper studies the effects of strategic patenting
on R&D, patenting and market value in the computer software industry. We focus on two
key aspects: patent portfolio size which affects bargaining power in patent disputes, and the
fragmentation of patent rights (‘patent thickets’) which ncreases the transaction costs of en-
forcement. We develop a model that incorporates both effects, as well as technology spillovers.
Using panel data for 121 firms covering the period 1980-99, we show that strategic patenting
and spillovers affect innovation and market value of software firms, that there is a patent pre-
mium accounting for 20 percent of the returns to R&D, and that software firms do not appear
to be trapped in a prisoner’s dilemma of ‘excessive patenting’.
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1 Introduction

There is an extensive empirical literature that demonstrates that R&D creates positive knowl-
edge spillovers, which in turn contribute to productivity growth and subsequent innovation.
This consensus lies at the heart of modern theories of endogenous growth and is the primary
justification for government R&D-support policies.! One of the main instruments governments
use to increase innovation incentives is the patent system. However, there is growing concern
among academic scholars and public policy makers that patent rights are themselves becoming
an impediment to the innovation process. The argument is that strategic patenting by firms has
created a landscape characterized by a large number of patents, often with fuzzy boundaries
and fragmented ownership — so called ‘patent thickets’. It is claimed that these fragmented
patent rights raise transaction costs, constrain the freedom of action for firms conducting R&D,
and expose them to ex post holdup through patent litigation. In this way, it is argued, the
growth of patenting has become a drag on innovation and capital investment. These dangers
have been prominently voiced in public debates on patent policy in the United States — e.g.,
National Research Council (2004) and Federal Trade Commission (2011) and — and in the grow-
ing concern over the use of injunctive relief in infringement cases, as in the recent eBay decision
by the U.S. Supreme Court (eBay Inc. v. MercExchange, L.L.C., 547 U.S. 338 (2006).2
These concerns have been intensified by the acceleration in patenting over the past three
decades, especially in high technology industries. During the period 1976-1999 the total number
of patent applications in the United States (granted by 2010) grew at an average annual rate

of 4.4 percent. The growth accelerated sharply from the late-1980s, when there was a pro-

'Leading examples include CGrossman and Helpman (1991) and Aghion and Howitt (1992). For a recent
survey of the litertaure, see Jones (2005). In a recent paper, Bloom, Schankerman and van Reenen (2012)
show that R&D also creates negative (pecuniary) externalities through product market rivalry which can lead
to over-investment in R&D. But their empirical results confirm that positive externalties dominate, with social
returns to R&D exceeding private returns, at least on average.

?The eBay decision is generally seen as limiting the use of injunctions in order to prevent hold-up. The
dangers were voiced clearly by Justice Kennedy in a concurring opinion:

“In cases now arising trial courts should bear in mind that in many instances the nature of the patent being
enforced and the economic function of the patent holder present considerations quite unlike earlier cases. An
industry has developed in which firms use patents not as a basis for producing and selling goods but, instead,
primarily for obtaining licensing fees...For these firms, an injunction, and the potentially serious sanctions arising
from its violation, can be employed as a bargaining tool to charge exorbitant fees to companies that seek to buy
licenses to practice the patent.”



patent shift associated with the establishment of the specialized Court of Appeals for the
Federal Circuit and other developments (Kortum and Lerner, 1999; Jaffe and Lerner, 2004).
In the period 1986-1999, aggregate patenting grew at an annual rate of 6.7 percent. This
recent growth has been particularly rapid in high tech industries — for example, 9.3 percent in
pharmaceuticals, 9.2 in medical instruments, 26.9 in biotechnology, 15.8 in semiconductors and
21.0 percent in software (up to 1996). The rapid growth in software patenting is due in part
to judicial decisions during this period that limited the scope of software copyright protection,
while at the same time extending the patentability of software (in particular, algorithms not
embedded in hardware).?

Previous studies have shown that firms, especially in high-tech industries, try to resolve
patent disputes by cross licensing agreements, patent pools and other cooperative mechanisms
(Lanjouw and Schankerman, 2004; Galasso, 2010). The importance of such mechanisms is
greatest in ‘complex’ technology industries where innovation is cumulative and requires the
input of a large number of patented innovations from diverse firms (Hall and Ziedonis, 2001;
Ziedonis, 2003, 2004). In such industries, fragmented property rights can impede R&D activity
by constraining the ability of firms to operate unless they have secured the required licenses
of complementary technologies. This position was first enunciated by Heller and Eisenberg
(1998), who labelled it the ‘problem of the anti-commons.” By increasing the transaction
costs of doing R&D, and the possibility that bargaining failures blocks follow-on innovation
altogether, patent thickets provide an incentive for firms to develop defensive strategies, which
we refer to collectively as strategic patenting. However, there remains sharp disagreement
among economic and legal scholars about the scope and severity of this problem.?

Strategic patenting encompasses two conceptually distinct issues, which have not always

3Key decisions included Computer Associates Int’l Inc. v. Altai Inc. 23 USPQ.2d 1241 (2nd Cir. 1992),
Apple Computer Inc. v. Microsoft Corp. 35 F. 3d 1435 (9th Cir. 1994), and Lotus Development Corp v.
Borland Int’l Inc., 49 F. 3d 807 (1st Cir. 1995.) For a good discussion of the changes in the legal environment
for software patenting, see Lerner and Zhu (2005) and Hall and MacGarvie (2010).

4For opposing views on the dangers of patent thickets in software, see Lessig (2001), Lemley and Shapiro
(2007), and Mann (2005). Merges (1996, 1999, 2004) has been a leading voice arguing that firms find ways to
contract around patent thickets, and even strategically put some proprietary knowledge in the public domain
in order to pre-empt contracting problems. Walsh, Arora and Cohen (2003) and Walsh, Cho and Cohen (2005)
present supporting survey evidence in the context of biomedical research activity. In an important set of recent
empirical papers, Murray and Stern (2007), Huang and Murray (2009) and Furman and Stern (2010) show that
patent thickets have had some impeding effect on the rate of cumulative innovation in the biomedical area.



been sharply distinguished in the literature. The first aspect — which we refer to as defensive
patenting — involves the accumulation of patents to use as bargaining chits to preserve the
freedom to operate and to improve the bargaining position of the firm in resolving patent
disputes when they arise. The key is the link between patent portfolio size and bargaining
power. Having a larger patent portfolio puts a firm in a better position to resolve disputes
without incurring the high costs of going to court, as well as securing a more favourable outcome
in those disputes. Defensive patenting can be costly, but the greater economic concern is that it
imposes a negative externality on other firms: by increasing the firm’s bargaining power in the
form of more ‘chits to trade’ in patent disputes, patenting by one firm raises the cost for other
firms of protecting or appropriating the rents from their innovations. In the extreme case, this
phenomenon could theoretically create a prisoner’s dilemma in which all firms might be better
off reducing patenting collectively, but none is willing to do so individually. Some authors
claim that this actually occurs in complex technology industries, including semiconductors and
software (Bessen and Maskin, 2000; Bessen and Meuer, 2005). However, in this paper we will
provide evidence for the software sector that is not consistent with this dire prediction.

The second aspect of strategic patenting involves the link between transaction costs and
the number of potential disputants. This is referred to in the literature as the fragmentation of
patent rights. When a firm faces many firms with whom patent disputes may arise, transaction
costs rise. Moreover, since disputes are normally resolved bilaterally (not collectively), having to
deal with many disputants makes bargaining failures more likely, and creates the ‘complements
problem’ — value maximisation requires coordinated resolution which is ignored by independent
claimants (Shapiro, 2001).

Despite widespread concern about patent thickets, the econometric evidence on their
effects is actually quite limited. The two leading empirical studies are Hall and Ziedonis (2001)
and Ziedonis (2003a), both of which focus on the semiconductor industry. The Hall and Ziedonis
study shows that patenting rose sharply in the 1990’s (after controlling for R&D and other
factors), especially for capital intensive semiconductor firms. While indirect, this evidence is
consistent with defensive patenting since the danger of ex post holdup would be greater for
such firms. Ziedonis (2003b) tests the hypothesis more directly by examining the relationship

between firm-level patenting and a measure of the fragmentation of patent rights. She finds



that patenting is higher (in the cross section of firms) when firms face greater fragmentation of
patent rights among rival firms. Both of these papers focus exclusively on the impact of patent
thickets on patenting behaviour. Their impact on R&D investment and the stock market
valuation of firms remains unexplored.’

In this paper we study the impact of strategic patenting on the R&D, patenting and
market value of firms in the computer software industry.® Like semiconductors, software is a
classic example of a complex technology in which cumulative innovation plays a central role.
We develop a model that incorporates both aspects of strategic patenting — portfolio size and
the fragmentation of patent rights — as well as knowledge spillovers. The model generates
testable predictions about the impact of strategic patenting and knowledge spillovers on R&D,
patenting and market value of firms. All three externalities are related to the firm’s proximity
to other firms in technology space. We measure technology proximity using information on the
distribution of the citations contained in a firm’s patents to different technology classes. In the
empirical specification of the model, we follow the approach developed in Bloom, Schankerman
and Van Reenen (2012), using multiple indicators of performance in order to help identify the
three types of externalities in which we are interested.”

Using panel data on ‘software firms’ in the U.S. during 1980-99, we find evidence of
both strategic patenting and R&D spillovers. First, we find that that greater fragmentation
of patent rights — which corresponds to higher transaction costs — is associated with lower
market value, but higher levels of patenting and R&D. In the context of the strategic patenting
model we develop, the finding that fragmentation increases patenting arises because patent
accumulation is more important for resolving disputes when there are more patent holders

with whom to deal. The second finding is that patenting by technology rivals reduces the

SWhile not specifically testing the patent thickets hypothesis, in an unpublished empirical paper Bessen and
Hunt (2003) argue that software patenting has actually reduced the level of R&D. This highly controversial
paper has been sharply criticised by Hahn and Wallsten (2003).

Tn a recent empirical paper, Hall and MacGarvie (2010) also investigate the effects of software and other
patents on the market value of firms in the ICT sectors. However, they do not analyse the effects of strategic
patenting.

"Bloom, Schankerman and Van Reenen (2012) develop a methodology for distinguishing between the tech-
nology spillover and product market rivalry (business stealing) effects of R&D, and apply it to a large panel of
U.S. firms. They do not address the impact of stategic patenting, which is the focus of our paper. To keep the
framework tractable, we do not incorporate product market rivalry into the model.



firm’s market value, patenting and R&D. This finding indicate the importance of bargaining
power in resolving patent disputes. Moreover, we show that the impact of strategic patenting
is significantly larger in the post-1994 period, when the courts expanded the scope for software
patenting. The third key result is that R&D spillovers are important for the software firms
in our sample. Spillovers significantly increase patenting and market value, controlling for the
firm’s stock of R&D. Finally, we also show that there is a large ‘patent premium’ in the stock
market for these software firms, controlling for their stock of R&D and other factors. Using our
parameter estimates, we show that this patent premium accounts for about 20 percent of the
private return to R&D for these software firms. Our calculations also indicate that firms would
not be better off by collectively reducing their levels of patenting — i.e., they do not appear
to be trapped in a prisoners’ dilemma of high patenting. Whether this is socially desirable, of
course, is an entirely different matter.

The paper is organised as follows. Section 2 presents the theoretical model (details in
Appendix 1) and summarises the empirical predictions. In Section 3 we describe the construc-
tion of the strategic patenting and technology spillover variables. Section 4 describes the data
set. In Section 5 we present the econometric specification of the three equations in the model
— market value, patenting and R&D. Section 6 presents the baseline empirical results and their
implications, and Section 7 summarizes a series of robustness tests. We conclude with a brief

summary of key findings and directions for future research.

2 Analytical Framework

We consider a setting with two firms, denoted 0 and 7. We will refer to firm 0 as the focal firm.
Each firm produces knowledge by investing in R&D, but it also may benefit from technology
spillovers from the other firm, which we will call its technology rival. Each firm recognises that
it generates as well as receives technology spillovers. The knowledge production functions for

the focal firm and the technology rival are

ko = ¢°(ro,7r)

kr = ¢T(TT7 TO)



We assume that qb’i > 0 and qbg > 0 and ¢' is concave in both arguments, where i = 0,7 and
subscripts 1 and 2 refer to derivatives with respect to the arguments in ¢°. If there are knowledge
spillovers, qﬁ% > 0, but theory does not sign the cross partial qﬁ’ﬁ. Knowlege spillovers raise the
average product of own R&D, but they can raise, lower or leave unchanged the marginal
product. As we will show later, this implies that the impact of knowledge spillovers on the
optimal choice of R&D investment is ambiguous.

We assume that patent protection (potentially) increases the rents that a firm can earn
from its innovations. Let p € (0,1) denote the fraction of its knowledge that it protects
by patenting, which we call the ‘patent propensity’. We let A > 1 represent the amount of
rent that can be appropriated from a unit of knowledge if it patented relative to the rents
if it is not patented, which we call ‘patent effectiveness’. Thus A — 1 represents the patent
premium. Thus the ‘effective unit’ of knowledge from an appropriation perspective is given
by 6o = poA+ (1 — py). The focal firm’s variable profit function is II(6pko, w), which we assume
is increasing and concave in kg, and decreasing and convex in input prices, w. For notational
simplicity we suppress input prices in what follows.

Patenting is costly. The unit cost of a patent includes a fixed administrative (application)
fee denoted by ¢, and a patent enforcement cost denoted by H. Enforcement costs depend on
two features of the patenting environment in which the firm operates. The economic literature
on patents emphasises that transaction costs of patent enforcement are likely to be higher
higher when patent rights are widely dispersed (‘fragmented’) among different owners, rather
than being held by a relatively small number of other firms. When patent rights are more
fragmented, it is more costly for a patentee to contract with other relevant patentholders
to conduct its R&D activity, which is referred to by Shapiro (2001) as ‘navigating the patent
thicket.” In addition to higher transaction costs, the risk of bargaining failure in the negotiation
over the required set of (patented) technological inputs is also greater when there are more
distinct patentholders with whom negotiations must be conducted.®

The second determinant of enforcement costs is the size of the patent portfolio held by

the firm. Using comprehensive data on patent litigation in the U.S., Lanjouw and Schankerman

8For discussion and evidence, see Heller and Eisenberg (1996), Ziedonis (2003a), Arora and Cohen (2003),
and Walsh, Cho and Cohen (2005).



(2001, 2004) show that the probability of a patent being involved in litigation is much lower
when that patent is held as part of a larger portfolio, controlling for observable characteristics
of the patent and the patent owner. They argue that these economies of scale in enforcement
reflect the ability of larger firms to avoid disputes and to resolve those that do arise in tacitly
cooperative ways. In addition, having a larger portfolio size puts the firm in a better bargaining
position in negotiations (improving the terms of any agreement), and increases the potential
threat to retaliate in the event negotiations of disputes fail. In addition, firms with large patent
portfolios avoid litigation through broad cross licensing agreements that preserve their freedom
to operate and lower transaction costs (Galasso, 2012). For all these reasons, portfolio size
enables firms to reduce the costs of enforcing their patent rights effectively. We refer to this as
the ‘portfolio size effect’.

To capture these ideas, we assume that the enforcement cost for firm 0 is a function of
two factors: (1) the number of patents held by firm 0 relative to firm 7, denoted by x = 5‘:—23
(the portfolio size effect), and (2) the degree of fragmentation of patents held by firms in similar

technology areas, denoted by f (the patent thicket effect). Formally, we denote the enforcement

cost per patent by

H = H(z,f)

Relative portfolio size, x, is endogenous since the firm chooses its patent propensity p,. We
treat the fragmentation of patents by firms in similar technology areas as exogenous to the
firm.

By adopting a specification of the patent portfolio effect that depends on the relative
(rather than absolute) number of patents between a firm and its technology rival, we highlight
the idea that it might be mutually beneficial for firms to reduce their propensities to patent,
putting aside for the moment the lower level of innovation rents that might result if there is
a patent premium. In other words, there may be a prisoner’s dilemma aspect to strategic
patenting, as Bessen and Maskin (2008) emphasize. In the empirical analysis below, we will
use our parameter estimates to test whether this prisoner’s dilemma actually operates for the

software firms in our sample.



The direct effect of higher fragmentation of patents among a firm’s technology rivals
is to increase its enforcement costs — that is, Hy > 0. However, there is also an indirect
effect because greater fragmentation may change the marginal value of accumulating patents
to reduce enforcement costs, which is given by | H, |. This indirect effect can be either
positive or negative — it depends on the sign of H,;. We find it most plausible that greater
fragmentation of patent rights increases the marginal value of accumulating patent portfolios,
which corresponds to H,; < 0, because in such cases firms are less likely to have effective
methods of ‘tacit cooperation’, apart from explicit patent trading arrangements, to resolve
disputes with different patent holders without litigation. We will show that this hypothesis
implies a testable prediction, which we will examine in the empirical analysis.

Each firm has two decision variables: the level of R&D investment and the patent propen-
sity. The firm chooses these instruments to maximise the market value, which is given by
variable profit net of the cost of R&D and patent application and enforcement costs. Focusing

on the focal firm, we can write the decision problem as

max V = H(Goqu(To,TT)) — 1o — {cpy + H(z, f)}QbO(TOvTT) (1)

T0,P0

Recall that the knowledge production functions ko = ¢°(rg,7,) and k; = ¢"(r,,7() enter the

function H(z, f) since © = %_

In the specification above, we assume that the enforcement
cost H(x, f) applies to all units of knowledge, both patented and unpatented. The idea is
that if a firm has more bargaining chits in the form of patents, it can also more easily resolve
disputes over unpatented innovations.’

The first order conditions for the focal firm’s maximisation problem are

k
Ve = 10017 — cpo — H} — (22) (o0} — o) Ho —1 =0 Q
V, = ko{f(A— 1Y —c—( ko) }=0 (3)
po — M 1 p-kr zfy =

9 An alternative specification is to assume that the enforcement cost is higher for patented innovations. We
can do this by expressing unit cost as cpy+{(14+p)pe+(1—po) }H(z, f), where o > 0. The qualitative predictions
in this specification are similar to those in the text.



where the superscripts on ¢ and II refer to the firm, while the subscripts denote partial deriv-
atives (1 refers to the single argument in II, and 1 and 2 refer to the two arguments in ¢).

The first term in equation (2) is the marginal benefit of R&D net of patent enforcement
costs. The second term is the reduction in marginal enforcement cost from increasing the stock
of knowledge, holding the patent propensity constant. The sum of these benefits must equal
the marginal cost of R&D. In equation (3), the firm’s choice of patent propensity trades off
the administrative cost of patenting against the increased appropriation of innovation rent due
to the patent premium and the reduction in patent enforcement costs due to having a larger
patent portfolio.

For the empirical analysis, we use the model to derive predictions about how R&D and
patenting by the technology rival firm 7, and the fragmentation of patent rights, affect the
optimal choices of the focal firm 0.!° Appendix 1 provides the technical details of the analysis.
As we make clear in that appendix, we need two key ancillary assumptions to derive these
predictions, which we want to bring out here for clarity. These assumptions are:

AL (a) k-6 — kool > 0 and (b) kod] — k-¢3 > 0

A2 e <1

Assumption Al says that a firm’s R&D has a larger impact on its own knowledge pro-
duction (in elasticity terms) than it does on its rival’s knowledge (part (a) applies to firm 0,
part (b) to firm 7).!' This seems natural since a firm’s own R&D is presumably more closely
tied to its innovation activity than a rival’s (and only a part of the rival’s activity may in fact
be relevant). As is clear from the second term in equation (2), this assumption ensures that an
increase in own R&D has the effect of reducing enforcement costs. Assumption A2 says that
the elasticity of the marginal enforcement cost function (H,) with respect to portfolio size is

less than one in absolute value — i.e., that diminishing returns to portfolio accumulation are

not ‘too strong’.

19Tn this analysis we treat firm 7’s decisions as exogenous to the focal firm. In the empirical analysis we will
show that the results are robust to using lagged internal instruments to account for possible endogeneity issues.

" Rearranging part (a) in Al and multiplying through by o, we get %¢(1) > ,’;—2¢; The left hand side is the
elasticity of ko with respect to ro and the right hand side is the elasticity of k. with respect to ro. Analogously,
multiplying through part (b) by 7, we get Z—:¢{ > ;—:qﬁg The left hand side is the elasticity of k. with respect
to r- and the right hand side is the elasticity of ko with respect to r-.



Together with Assumptions Al and A2, the model generates predictions about how the
fragmentation of patent rights, patent propensity of rivals, and technology spillovers affect the

market value, patents and R&D of the focal firm. Table 1 summarizes these predictions.
[TABLE 1 ABOUT HERE]

We can summarise the intuition behind these predictions as follows. Starting with the
market value equation, greater fragmentation of patent rights among technology rivals means
higher transaction costs for a firm in licensing complementary patents and resolving patent
disputes. This higher enforcement cost reduces market value unambiguously (%—‘j? < 0). Sec-
ond, when the patent propensity of technology rivals is higher, the focal firm incurs greater
enforcement costs, since they depend on the relative patent portfolio sizes of the focal firm
and its rivals. This also lowers market value (%—‘j? < 0). Third, a rise in R&D by technology
rivals increases knowledge spillovers enjoyed by the focal firm and thus raises its market value
(52 >0).

We consider next the patenting and R&D equations together. First, greater fragmenta-
tion of patent rights means higher transaction costs for the focal firm, which has two effects.
The direct effect is to raise enforcement costs for the focal firm, which reduces the profitability
and thus the optimal level of both R&D and patenting. However, there is also an indirect effect
because greater fragmentation changes the marginal incentive to accumulate patents (and the
R&D that creates them) in order to reduce enforcement costs. The direction of this effect
depends on the sign of H,;. If fragmentation increases the marginal value of accumulating
patents (given by| H |) —i.e., if Hy¢ < 0, which is what we would expect — then the direct and
indirect effects work in opposite directions and the impact on R&D and patents is ambiguous.
Conversely, if H,y > 0, then fragmentation must reduce R&D and patenting. Therefore, if we
find that fragmentation has a positive impact on R&D and/or patenting (%—Z? > 0, %Lfo > 0),
we can infer that H,; < 0.

Second, an increase in the patent propensity of technology rivals raises enforcement costs

for the focal firm, and thus reduces the optimal level of R&D and patenting. (g% < 0 and

9pg

o < 0).!2 Finally, when technology rivals increase their R&D, this raises the knowledge

12There is also an indirect effect at play here: greater patent accumulation by technology rivals reduces the

10



spillovers enjoyed by the focal firm and thus its innovation output. This increases the the
marginal returns to patenting and thus the focal firm’s patent propensity ( g—ff > (). However,
the effect on its own R&D spending is ambiguous because theory does not determine the impact
of spillovers on the marginal productivity of own R&D (i.e., the sign of ¢4 is ambiguous).
We also want to point out that the use of multiple outcomes — market value, patents and
R&D — provides a stronger test of the model than we would have from any single indicator. The
market value equation provides the unambiguous prediction on the impact of fragmentation
(whereas the impact on patents and R&D depend on the sign of H,¢). Each of the three
equations provides a (complementary) test of the effects of rivals’ patent propensity, and thus
a stronger overall check on this hypothesis. Finally, we get two tests of the effects of R&D

spillovers, one from the market value equation and the other from the patents equation.
3 Measuring strategic patenting and technology spillovers

The software firms in our sample have patenting activity in a variety of technology fields.
We need to take into account the potential technology spillovers from R&D done by these
firms in all of their areas of activity. The standard approach (Jaffe, 1986) is to measure
technological proximity between firms as the uncentered correlation coefficient between their
patent distributions across patent classes, and then to measure spillovers as a weighted sum
of R&D by other firms using this proximity measure. We follow a similar approach except
that we use the distribution of a firm’s backward patent citations across patent classes to
measure technological proximity. Our measure of backward citations for a firm includes all of
the citations made by that firm in the patents it has been granted up to that year (excluding
self-cites). Using citations, rather than patent counts, to construct the proximity measure is
appealing because patent citations identify the earlier (patented) technologies that the invention
draws upon. The idea is that patent disputes are likely to be associated with these related

technologies. Economic research has shown that patent litigation is more likely to arise when

relative patent portfolio of the focal firm, x, which increases the marginal value of patenting by the focal firm
since Hyz > 0. The net effect is revealed by the sign of the cross-derivative H, , . Using the enforcement cost
function H(z, f) where z = [’:S:i, we get sign H,,, = sign {—H.(1+ He./H,)}. Under Assumption A2, we
obtain H,,, > 0, so we get the prediction that greater patenting by rivals reduces the incentive for a firm to

accumulate patents.

11



technological similarity is greater (Lanjouw and Schankerman, 2004). To our knowledge, ours
is the first paper to implement a citations-based proximity measure.

Formally, let W; = {wik}szl be the distribution of firm i’s backward citations across
patent classes — i.e., w; is the share of firm #’'s total citations to preceding patents that fall
into patent class k. Self-cites are excluded. Then technology proximity between firm ¢ and j
is given by the uncentered correlation coefficient between the citation distributions of the two

firms:
Wi'W;
(W Wi)2 (W)

(4)

Tij =

where 7;; € [0,1]. In the sample, there is large variation in the computed technology distances
between firms, with a median of 0.118 but varying all the way from no overlap in citations
(1 = 0) to perfect overlap (7 = 1). Among the top five percent of firm pairs in terms of our
index of technology proximity are Intel and IBM, Adobe and Apple, and Microsoft and Sun
Microsystems. As a robustness check, we also constructed the standard Jaffe measure based
on the distribution of patents. The cross sectional correlation between the two technology
proximity measures is 0.69, and the econometric results are similar to those reported in Section
6 when we use the patent-based measure.

We measure technology spillovers as the weighted sum of other firms’ R&D stock, G,
using the technology proximity weights

Spillovery = Z TGt (5)
J#

The R&D stock is constructed by initialising the stock at the beginning of the sample period
and using a 15 percent depreciation rate.!3

To capture the patent portfolio effect of strategic patenting, we compute the weighted
average of the ‘patent propensity’ (measured as the ratio of the patent to R&D stocks) of other
firms that are rivals in technology space. The idea is that, given the stock of own R&D and
technology spillovers, firms facing technology rivals with higher patent propensities will face

higher enforcement costs, and be at a greater disadvantage in bargaining over patent disputes.

31nitial stock is defined as the intial sample value of R&D divided by the sum of the depreciation rate and the
average growth in R&D in the first three years of the sample. We experimented with variations of this method
and other depreciation rates with similar results.

12



Let Zj; = PG‘?: denote the patent propensity of firm j, where PS is the stock of patents defined

in the same way as the R&D stock, GG. The patent propensity measure is

Patprop;; = Z w;ij Zjt (6)
J#L
where w;; = %.14

To capture the patent thicket effect of strategic patenting, we want a measure of how
many rivals a firm must negotiate with in order to preserve freedom of operation in its R&D
activity. The basic idea is that, when a focal firm’s patent citations are more fragmented among
technology rivals, that firm will incur higher transaction costs in dealing with patent disputes
that may arise. Earlier studies of patent thickets employ measures of fragmentation based on
how dispersed patenting is across firms in the same technology field as the focal patent field
(e.g., Ziedonis, 2004; Galasso and Schankerman, 2010). By contrast, our measure is based on
the number of different firms cited by the focal firm in its patents. Our fragmentation index is
higher captures the degree to which the focal firm cites patents held by diverse firms.

To construct our fragmentation index of patent citations for firm ¢ in year ¢, we first
identify the firm which owns (i.e., patent assignee) each patent that firm 4 cites in any of
the patents in its portfolio in year ¢. From this information, we compute the share of firm i's
backward citations that is accounted for by each of its cited firms. Self-cites are excluded. The
4-firm fragmentation measure is equal to one minus the share of these backward cites that go to
the top four firms. Formally, let s;j; (¢ # j) denote the share of the total number of citations by
firm ¢ that refer to patents held by firm j, cumulated up to year ¢, and arranged in descending
order. The 4-firm fragmentation measure is

4
Fragcites;y =1 — Z Sijt (7)
j=1
We also experimented with two alternative measures — an 8-firm fragmentation index and a

Herfindahl index, both based on the distribution of backward cites as described above. The

econometric results using these measures are similar to those reported in Section 6.

14We also experimented with an alternative measure that does not normalise the weights, i,.e, using Tij
rather than w;;. Empirical results are similar to those reported in the text. The non-normalised measure is less
conceptually appealing because it results in a higher Patprop when there are more technological competitors,
for a given level of rivals’ patent propensity. As such, the alternative measure blurs the distinction between the
effects of patent propensity and concentration in the technology market.
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4 Data

Our data set covers the period 1980-1999 and is constructed from three sources. We use
Compustat data on public firms for information on R&D and components of Tobin’s Q: value
of equities, debt and physical assets. We use a variety of patent data from the U.S. Patent
and Technology Office, including the number of patents granted (dated by year of application),
the number of backward and forward citations, U.S. patent classifications and the identity of
the assignee.'® In addition to using patent counts in the patent equation, we use these data to
construct technological proximity and technological opportunity variables.

We focus on firms whose patents are predominantly in software. Unfortunately, there
is no patent class simply called ‘software’ so we need a procedure that can sensibly identify
software patents.' One approach is to do a keyword search on the USPTO database (this
is the approach adopted by Bessen and Hunt, 2003). This can be difficult, and problematic,
because many patent applications may contain the word software or other related words but
not be primarily about software itself. An arduous alternative is to read each of the (thousands
of) potential candidate patents and make a subjective determination on each one (Allison and
Tiller, 2003). A third approach is to base the definition on a specific set of patent classes — e.g.,
Graham and Mowery (2003) use the classes most common to well-known software firms such as
Microsoft or Adobe. We adopt a related approach: we define a software patent as any patent
classified by the Patent Office in International Patent Classification GO6F (‘Electric Digital
Data Processing’). This single class accounts for about half of all patents issued to the largest
100 packaged software companies, as tabulated by the trade publication Softletter (1998).
Fortunately, in a careful discussion of these various alternative approaches, Hall and MacGarvie
(2010) conclude that there is considerable overlap in the resulting populations of ‘software
patents’ and that empirical findings are not particularly sensitive to the methodological choice.

Software (GO6F) patents are taken out by firms in many diverse industries (Shalem and

Trajtenberg, 2009). Moreover, even ‘pure’ software firms are likely to patent outside GO6F, and

5 Following the literature, we date patents by their application year because that is more closely tied to
measures of R&D and firm value.

'For a good discussion of different approaches to defining software patents, see Layne-Farrar (2005).
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may have genuinely non-software patents. The firm with the highest specialisation in GO6F
patents for large firms in our dataset is Microsoft — yet even it has only 71 percent of its patents
classified in this category. Therefore, we define a software firm as one which has at least 45
percent of its patents classified as software (GO6F) patents, after normalization by Microsoft’s
GOGF percentage. There are 149 publicly traded software firms that satisfy this criterion and
also have data on R&D and market value. Of these, 121 firms have complete data for at least
two consecutive years, and these constitute the final sample. We use all the patents held by a
firm, both software and non-software, because R&D and market value refer to the entire firm.
The 121 publicly traded firms in the final sample cover the period 1980-99 and include 29,363
patents of which 12,507 are software patents. This sample accounts for about 39 percent of all
GO6F patents issued to public firms during this period.!” About two-thirds of the firms (82
of 121) are classified in SIC 7372 (‘prepackaged software’), the remainder falling into various
computer, communications and semi-conductor classes. Appendix 2 provides a list of the firms
in our sample, together with their primary industry (SIC) classification.

Finally, we must be careful to identify all patents held by each parent firm for whom
we have R&D and value information. A parent firm may register a patent in its own name
or in the name of one of its subsidiaries. The fact that subsidiaries can be bought and sold
makes matching the patent to data from the parent firm more difficult. Hall, Jaffe, Trajtenberg
(2005) matched patent assignees to the parent firm for patents for the period 1963-99 using
1989 ownership patterns. The resulting database is known as the ‘NBER patent database’ since
it resides at NBER. However, for the group of software firms in which we are interested (some
of which were established in the 1990’s), the 1989 match is antiquated. Therefore, for all firms
that recorded at least one software patent between 1980 and 1999, we performed a new match
of that firm to its parent and all its subsidiaries, based on 1999 ownership patterns. We then

linked all patents of the subsidiaries to the parent company to produce a consolidated account

In the full Compustat data set of public firms, there are 3441 firms holding 31,950 GO6F patents. More
than a third of these patents (12,612) are held by five large firms: IBM, Hitachi, Hewlett Packard, Motorola,
and Texas Instruments. Of these five firms, only IBM satisfies the software patent threshold we use (46 percent
of its patents are in the GOGF class); the others are well below a 30 percent cutoff. Excluding IBM dramatically
reduces the percentage of GO6F patents captured by the sample, from 39 percent to only 18 percent. We check
robustness of our empirical results by rerunning all of the econometric experiments and computations using a
50 percent threshold to define the sample, which excludes IBM. The results were very similar to those reported
in Section 6.
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of patent activity of our sample firms. For every assignee in the NBER patent database that
had at least one GO6F patent assigned to it, we checked whether the assignee was a parent firm
or a subsidiary to some parent firm in 1999. If the firm was a subsidiary, we treated all patents
of that subsidiary to be the patents of the parent firm. If the assignee was a parent firm, then
we included it in our dataset if three conditions are met: the firm is publicly traded, we have
Compustat data for it, and the firm meets the 45 percent GO6F-to-total-patents cutoff, which
is our lower limit for calling it a ‘software firm’. Appendix 2 provides details on the how the
matching was done.

Table 2 provides some basic descriptive statistics. The sample firms are large and R&D
intensive, but with considerable heterogeneity in market value, patents and R&D. Tobin’s Q
is very high, as compared with other industries. This mainly reflects the fact that software
firms use relatively little physical capital as compared to R&D, but also the over-valuation in
the high tech bubble of the 1990s. There is substantial variation in the patent propensity of
technology rivals (Patprop). Patent citations are not dramatically fragmented — the sample
mean of Fragcites is 0.53, which implies (in the symmetric case) that on average a firm cites
about eight other firms. It is also worth noting (not reported in the table) that the average value
of Patprop rose sharply after 1994 (then courts expanded the scope for software patenting) — it
was 0.028 in 1980-94 and 0.133 in 1995-99. However, the fragmentation index does not change

much between the pre- and post-1994 periods, despite the sharp increase in software patenting.
[TABLE 2 ABOUT HERE]

5 Econometric Specification

5.1 Market Value Equation

In the empirical specification, we follow the approach of Bloom, Schankerman and Van Reenen
(2012) in using three outcome measures: market value, patents and R&D. In this section of
the paper we discuss the econometric specification of these equations.
We adopt the representation of the market value function originally proposed by Griliches
(1981):
In(V/A),, =Ink; +In(1+~"(G/A);) (8)
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where V' is the market value of the firm, A is the stock of tangible assets, GG is the stock of
R&D, and the superscript v indicates that the parameter is for the market value equation.'®
The parameter k;; is the shadow price of physical capital, and 7V is the ratio of the shadow
price of R&D capital to the shadow price of physical capital. The deviation of V/A (‘Tobin’s
average Q') from unity depends on the ratio of the R&D stock to the tangible capital stock

(G/A) and the determinants of k;. We parameterize the latter as

Inky = pYInPatpropi—1 + f51n Frageitesi—1 + [5 In Spillover;;—q

+ X8 + &Y+ + vy (9)

where &7 is a full set of four-digit industry dummies, n; a full set of time dummies, X, de-
notes other control variables such as industry demand and technological opportunity (explained
below), and v}, is an idiosyncratic error term.

The specification of the value function is nonlinear in the parameter *. If (G/A) were
‘small,” we could approximate In1 +~Y(G/A); by (G/A);, , but this will not be adequate for
many high tech firms (Hall and Oriani, 2004). Therefore, we approximate In (1 4+~ (G/A);,)
by a higher-order series expansion, which we denote by ®(G/A). We found that a fifth order
polynomial is satisfactory.

Taking these elements together, our basic empirical market value equation is

In(V/A);, = ®(G/A)it—1)+ B]In Patprop;—1 + B5In Fragcites;;—1

+B%1In Spillover;;—1 + X584 + &Y +nf + v}, (10)

The predictions of the model are as follows: [ < 0,55 < 0,55 > 0 and the marginal stock
market valuation of R&D, computed from the coefficients of the polynomial ®(G/A), should
be positive.

Following Hall, Jaffe and Trajtenberg (2005), we also estimate an extended version of the
model that allows for the stock market to value the patents held by a firm, above and beyond
its valuation of the firm’s R&D. The extended specification of the model treats the stock of

patents, denoted by P.S, in the same way as the stock of R&D. The specification is the same

8For a good discussion of issues arising in such specifications, see Hall, Jaffe and Trajtenberg (2005).
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as equation (10) except that we incorporate a (fifth) order polynomial in the ratio of the firm’s
patent stock to fixed assets, W(PS/A).!? This version allows us to compute the market patent
premium from the coefficients of the polynomial ¥(PS/A).

Since the software firms in our sample are classified into different SIC industries, we
include four-digit industry dummies in the market value equation to pick up unobserved het-
erogeneity. Ideally we would want to include fixed firm effects in the specification, but when
did so we found that it very hard to pin down any of the coefficients of interest. In a recent
paper, Hall, Jaffe and Trajtenberg (2005) reach a similar conclusion. The reason is that going
to the ‘within-firm’ dimension means that we are trying to explain variation over time in market
value (around the firm mean), which can be very noisy. In a first-differenced specification, the
variation over time would be very close to unpredictable, under the efficient markets hypothe-
sis.?Y The ‘within-firm’ estimator is not equivalent to first-differences, so it is possible in some
samples to exploit fixed firm effects successfully (this depends on the time series properties of
the data).?!

In the market value equation, as in the patent and R&D specifications described below,
the interpretation of the Spillover variable can be difficult because of the reflection problem
(Manski, 1991). Any variable that shifts the incentive for a firm to perform R&D and thus
its market value will also be likely to affect other firms that operate in similar technology
fields. Thus a positive correlation between R&D by technology rivals and the market value
(or R&D and patenting decisions) of a firm can arise either from genuine technology spillovers
or from common, unobserved demand or technology opportunity shocks. Our defences against
this problem are: (1) we include controls for demand and technological opportunity (discussed
below); (2) the spillover variable is based on stocks of R&D, which should mitigate correlation

with contemporaneous shocks; (3) we lag the independent variables, which should also reduce

9We do not include an additional polynomial in the interaction term %PTFV because it is too demanding on

the available data.

20Gtrictly speaking, under the efficient market hypothesis the market value in period ¢ should not be predictable
with information publicly available at ¢ — 1.

21 Using a larger sample of firms from a broader set of manuafacturing industries, Bloom, Schankerman and

Van Reenen (2012) are able to estimate a market value equation with fixed firm effects, but in the current study
we are not able to do so.
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the problem; and (4) we are particularly interested in testing the strategic patenting coefficients
B1 and [B5,which should be less directly affected by the reflection problem.

We control for the effects of demand and technological opportunity in three different
ways. First, we include a full set of year dummies in all specifications. Second, we include two
lag values of firm sales to pick up remaining demand shocks.?? Finally, we construct a measure
of technological opportunity defined as the total patenting in a technology class weighted by
a firm’s closeness to that class, as captured by its backward citations. The idea is that firms
cite patents similar in nature to its own, and if there is a large amount of patenting in areas
it cites, it is an active technological field. Let W; = {wik}le be the distribution of firm #’s
backward citations across patent classes (wg is the share of firm #’s total patent citations to
preceding patents that fall in class k), and PSj;; be the patent stock of firm j in class k at
time ¢. We define technological opportunity for firm i as T'echoppiy = > . > ki Wik PSjgs. Two

lagged values of Techopp are included in the regression equations.??

5.2 Patent Equation

Because patents are counts, we use a version of the negative binomial count data model that

allows for fixed effects. The first moment of the model is

E(Py|Xi) = exp{BYIn Patprop;;—1 + B51n Fragcites;;—1 + 5 In Spillover; ;1

+XJ B + €+ ) (11)

The predictions of the model are 87 < 0,55 = 0, and 5 > 0. Writing E(Py| X;¢) = exp(z},67)
for shorthand, the variance is V(P;;) = exp(z},5F) + aexp(2z},6”) where the parameter «
is a measure of over-dispersion. The Poisson model constrains the mean and variance to be
the same, corresponding to the special case o = 0, whereas the Negative Binomial estimator
relaxes this assumption (empirically, overdispersion is important in our data). We estimate

the model by maximum likelihood. We allow for unobserved firm heterogeneity using the pre-

22We also constructed an industry sales measure for each firm, equal to a weighted average of the sales in
each of the four-digit SIC classes in which the firm operates. The weights are constructed from Compustat
information on the distribution of firm sales across SIC classes which is available for the sub-period 1993-2001.
Results using this control are similar to those reported in Section 6.

BWe also experimented with measures using patent flows rather than stocks. Empirical results were similar
to those reported in the text.
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sample scaling approach developed by Blundell, Griffith and Van Reenen (1999) — this uses
pre-sample information on patents to control for heterogeneity. The alternative approach using
conditional maximum likelihood (Hausman, Hall and Griliches, 1984) is only consistent for

strictly exogenous regressors, which does not hold for our specification.

5.3 R&D Equation

We write the R&D equation as

InRy = ¢"InRy_1+ B]InPatpropy—1 + p51n Fragcites;;—1

+5 In Spillovery—1 + XJ}_1 8% + & + 0} + v, (12)

where & is a full set of firm dummies, 7] a full set of time dummies, X, denotes other control
variables such as industry demand, and v}, is an idiosyncratic error term. The predictions of
the model are 5] < 0,55 =2 0, and g5 2 0. In the R&D equation we include fixed firm effects
to capture unobserved heterogeneity.?* This specification allows for dynamics in R&D invest-
ment by including a lagged dependent variable. As in the market value equation, unobserved,
transitory shocks to demand are captured by the time dummies and a distributed lag of firm
sales, and firm level variables on the right hand side of the R&D equation are lagged by one

period to mitigate endogeneity problems.

6 Empirical Results

6.1 Market Value Equation

Table 3 presents the parameter estimates for the market value equation. The basic specification
in column 1 strongly supports the predictions of the model. First, not surprisingly we find that
the firm’s (lagged) R&D stock is strongly related to its market value. Using the estimated
coefficients on the polynomial in G/A, we find that a 10 percent increase in the R&D stock is
associated with a 8.4 percent increase in value. Evaluated at the sample means, this implies

that an extra dollar of R&D generates an increase of 96 cents in market value.?” This estimate

**The time dimension of the company panel is relatively long (mean number of annual observarions is 9.1), so
the ‘within groups bias’ on weakly endogenous variables is likely to be small (Nickell, 1981).

25We compute the elasticity of market value with respect to R&D stock as eyg = %@’(%) where ®' is the
derivative of the polynomial ®. The marginal value of R&D is g—g = %CI)/(%).
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is similar to the one found by Hall and MacGarvie (2010) in their study of software patents
(though they use a different scheme for identifying software patents). It is also in line with
Hall, Jaffe & Trajtenberg (2005), who study a broader sample of firms in diverse industries
and estimate a marginal return to R&D of 86 cents. However, as we show below, this figure
underestimates the full marginal return to R&D for software firms because there also is a large

indirect return in the form of a patent premium.

[TABLE 3 ABOUT HERE]

Second, we find that technology spillovers strongly affect the stock market value. The
estimated coefficient on Spillover is positive and statistically significant, and implies that a 10
percent increase in the pool of technology spillovers is associated with a 1.7 percent increase
in a firm’s market value. In absolute terms, the coefficient implies that a dollar of additional
Spillover is associated with an increase in market value of 13 cents. In other words, an extra
dollar of technology spillovers is worth (in terms of market value) about 13 percent as much as a
dollar of own R&D for these software firms. This estimate of the impact of technology spillovers
(relative to own R&D) is larger than previous estimates that are based on samples covering a
range of different industries (e.g., Hall, Jaffe and Trajtenberg, 2005; Bloom, Schankerman and
Van Reenen, 2012), which is consistent with the widely-held view that cumulative innovation
is particularly important in software.

Third, our findings strongly support the model’s predictions about strategic patenting
— there is evidence that both fragmentation of property rights (transaction costs) and relative
patent portfolio size (bargaining power) affect the market value of firms. Firms that face a
more fragmented set patent rights among rivals have significantly lower market value. This
finding is consistent with the hypothesis that higher fragmentation increases the transactions
costs of settling patent disputes. The coefficient on Fragcites is statistically significant and
implies that a five percentage point increase in the four-firm citation concentration ratio (this
is a 10 percent increase at the sample mean) raises market value by 1.7 percent. We also find
that firms which face technology rivals with higher patent propensities have lower market value.
The estimated coefficient on Patprop is negative and statistically significant, and implies that

a 10 percent increase in the patent propensity of rivals reduces a firm’s value by 1.3 percent.
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Finally, the coefficients on the firm sales and technological opportunity variables show
that market value is positively related to the growth in demand and the growth in technological
opportunity, as measured by aggregate patenting activity in the patent classes in which the firm
operates. This is confirmed by noting that the estimated coefficients on the first and second
lags of firm sales are nearly equal in magnitude but opposite in sign. The same holds for the
coeflicients on the first and second lags of the T'echopp variable.

The basic specification relates market value to the firm’s stock of R&D, as a proxy for
knowledge. Since firms typically do not patent all of their innovation output, R&D input is a
more encompassing measure of knowledge than simply using patents. However, as Schankerman
(1998) emphasized, there may also be a patent premium for those innovations the firm chooses to
patent —i.e., their private value would be less if not patented. This is a particularly contentious
issue in software, and other sectors where technology is fast-moving and cumulative. Some
commentators have suggested that patenting in such sectors does not contribute to private
value, and may even reduce it (e.g., Bessen and Meuer, 2005).

To investigate this hypothesis for software firms, we augment the empirical specification
with a (fifth-order) polynomial in the ratio of the patent stock to stock of fixed assets (denoted
by PS/A), analogously to our treatment of R&D. If there is a patent premium, the patent
stock should affect market value after controlling for the stock of R&D. The results in column
2 shows clear evidence of a patent premium. Using the estimated coefficients on the polynomial
in PS/A (evaluating at sample means), we obtain a statisticallly significant elasticity of market
value with respect to the stock of patents equal to 0.32 (standard error = 0.084). We denote
this elasticity by ey ps. Thus a 10 percent increase in the patent stock is associated with
a 3.2 percent rise in market value, holding the stock of R&D constant.?6 In this extended
specification, we also can compute the elasticity of market value with respect to the R&D stock,
denoted by eyg. The point estimate is 0.71. Taken together, these findings imply constant
returns to scale with respect to innovation in the value equation — a 10 percent increase in both
the stocks of R&D and patents is associated with about a 10.3 percent increase in market value.

Nonetheless, allowing for a patent premium in the specification of the market value equation

20We compute this elasticity as ey, ps = %\Il’(%) where U’ is the derivative of the polynomial V.
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has almost no effect on the other coefficients in the model — in particular, the coefficients on
the technology spillovers and strategic patenting variables remain virtually unchanged.

As we indicated earlier, the full return to an increase in R&D includes both the direct
market valuation of R&D and the indirect return through the patent premium. Formally,
we can express the total elasticity of market value with respect to R&D stock as follows:
Evg = eyvg + ev,ps eps,g. We use the parameter estimates on the polynomial terms in G/A
and PS/A (column 2 in Table 3) to compute the elasticities ey g and ey pg. To get the elasticity
of patents with respect to the stock of R&D, eps g, we use the coefficients estimated in the
patent equation which are presented later (column 2 in Table 4). This computation yields the
following decomposition: Eyg = 0.714+0.32 z 0.60 = 0.90. In other words, the direct effect of
a 10 percent increase in the R&D stock raises market value by 7.1 percent, but once we account
for the effect through the patent premium, the market value gain rises to 9.0 percent.

From this we conclude that the patent premium accounts for 21 percent of the total
elasticity effect of R&D.?” This finding shows that patents are important as a means of appro-
priating innovation rents in software. This is noteworthy because of the frequent claims to the
contrary.

One cautionary remark is in order. We interpret the patent premium as reflecting the
fact that patents enhance the ability of the firm to appropriate rents from any given innovation
output, relative to alternative methods of protection. It is also possible that patents are simply
serving as a (noisy) indicator of R&D success, but do not affect the firm’s ability to appropriate
innovation rent. Since patenting is costly we expect firms to take out patents only on their more
valuable innovations, so the patent premium we estimate from the market value equation may
reflect the higher profit stream associated with successful, above-average quality R&D. Unless

one had an independent indicator of R&D success, this second interpretation cannot be ruled

*TWe can also do the decomposition in terms of the marginal return to R&D (instead of elasticities). Note
that % = g% + %g—g%, where the last three terms constitute the patent premium. We compute the first
three derivatives from the estimated coefficients of the polynomial ® and W. Using the relationship between the

stock and flow of patents, we get % = —L where 7 and § are the real interest rate and depreciation rate (we

set r = .05, § = .15). We find that the pTa-Egnt premium accounts for 25 percent of the full marginal return to
R&D.

It is interesting to note that, in their study of software, Hall and MacGarvie (2010) found that the elasticity
of market value with respect to patents per R&D (controlling for R&D stocks) is 0.30. This is similar to our

computed patent premium.
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out. However, our estimated patent premium is broadly in line with estimates, for a variety
of industries, which are based on methodologies that are not subject to this interpretation
problem.?® For this reason, we conclude that software patent rights do in fact generate private
value.

One other important implication comes out of the empirical results. We found patenting
by its technology rivals reduces a firm’s market value (the coefficient on Patprop is negative).
As we pointed out in the introduction, however, some researchers (e.g., Bessen and Maskin,
2008) argue that patent regimes in complex technology industries create a prisoner’s dilemma
in which firms could be better off by collectively reducing their levels of patenting. We can
test this conjecture using our parameter estimates. Suppose that all firms were to increase
their patenting proportionally. If they are trapped in a prisoners’ dilemma, this scaling up
of patenting would be expected to reduce the market value of all firms, holding their R&D
constant. In particular, the conjecture implies that the sum of the coefficient on Patprop in the
market value equation and the elasticity on own patent stock (computed from the polynomial
in PS/A) should be negative. Our parameter estimates do not support this claim. Using the
estimates from column 2, we compute the sum of these elasticities as —0.12 + 0.32 = 0.19
(standard error = 0.11), which is significantly different from zero at the 10 percent level. This
result indicates that a proportional increase in patenting by the firms in our sample increases
the market value of firms.?? To our knowledge, this is the first attempt to subject the prisoners’
dilemma claim to an empirical test. While a definitive conclusion for software, and other
complex technology sectors, must await further studies to confirm or refute our finding, the
evidence here should raise doubts about the empirical relevance of the claim.

As discussed in the introduction, the scope of software patent protection was gradually
increased, and software copyright protection reduced, in a series of court decisions during the

1980s and early 1990s. These decisions made it increasingly desirable for firms to protect

2 These include patent renewal models that estimate the value of patent rights from the willingness of patentees
to pay maintaince fees (Schankerman and Pakes, 1986; Pakes, 1986; and Schankerman 1998), and structural
models using survey data of R&D and patenting (Arora, Ceccagnoli and Cohen, 2008).

2In our robustness analysis in Section 7, we also make this computation in an extended specification of the
patents and market value equations that adds a control for product market concentration. In that specification,
the sum of the estimated coefficient on Patprop and the elasticity of own patent stock is even larger, 0.280
(standard error = 0.12), and statistically significant at the 0.05 level.
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software algorithms using patents rather than by copyright as they had done previously. We
want to investigate whether the shift in patent policy, and the associated intensification of
software patenting, had any discernible impact on the market valuation of R&D and patents for
our software firms, or the effect of strategic patenting variables on market value. It is sometimes
claimed that these policy changes made strategic patenting in software more important. To
examine this, we break the sample into two sub-periods, 1980-94 and 1994-99, and estimate
the market value equation separately for each period.?"

Columns 3 and 4 in Table 3 presents the results. Two striking findings emerge. First,
we find no evidence that the shadow price of the R&D stock changed as a result of the change
in patent regime (the coefficients are not reported, for brevity). We cannot reject the null
hypothesis that the coefficients on the polynomial in G/A are the same in both periods (p-value
= 0.20). Second, although we do reject the hypothesis that the coefficients on the polynomial
in PS/A remained constant over the two periods (p-value < .01), the implied shadow price of
the patent stock does not change very much between periods. We estimate it at 0.50 in the
1980-94 period and 0.39 for 1995-99. Similarly, the estimated marginal value of a patent is not
sharply different between the periods: $5.3 million versus $3.9 million.

Second, we find that the impact of the strategic patenting variables on the market value
of firms increased substantially in the post-1994 period. Neither the fragmentation of patent
rights nor the patent propensity of rivals has any significant effect on market value in the earlier
period. After the policy shift, however, both fragmentation and the patenting by technology
rivals reduce market value, as the estimated coefficients on Fragcites and Patprop are negative
and statistically significant.

One last point warrants mention. We interpret the strategic patenting variables Fragcites
and Patprop as capturing aspects of the costs of enforcing patent rights as depicted in the model.
However, one might worry that our measures may simply be proxies for product market com-
petition. Greater fragmentation may proxy for low concentration (thus greater competition)

in the product market, which one would expect to reduce market value. Similarly, Patprop

30There are more observations in the second (shorter) sub-period because data are available for more firms.
However, when we restrict the analysis to those firms that also appear in the first sub-period, we get very similar
results.
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might be picking up the effect from patenting by product market competitors (who may also
be technology rivals). However, if this were the case, we would expect to see their impacts
on market value in both periods. The fact that Fragcites and Patprop have no signficant
effect in the first period suggests that they are not just serving as proxies for product market
competition. We conduct an additional check of this alternative interpretation in Section 7.
In summary, we conclude that the change in patent regime was associated with a sharp
increase in the importance of the strategic patenting variables. At the same time, despite a
large increase in the level of patenting during this later period, we do not find a sharp reduction
in the impact of R&D or patents on market value. Evidently, whatever diminishing returns
that was associated with the intensification of software patenting appears to have been largely
countervailed by the increased value from the strengthening of software patent protection.
While this may at first seem surprising, it is what we would expect to see if firms face roughly
the same cost of capital in both periods and are optimally adjusting their R&D and patenting

decisions to equalize the marginal private returns and costs from these investments.
6.2 Patent Equation

Table 4 presents the results for the patent equation.?! Not surprisingly, we find that patenting
is significantly related to the firm’s stock of R&D, but there are sharp decreasing returns both
in the model without and with the control for unobserved firm heterogeneity (columns 1 and
2). Note that the coefficient on the pre-sample patents variable is positive and statistically
significant (this holds in all specifications), which confirms that unobserved firm heterogeneity
in patenting behaviour is important. Using the specification with the pre-sample control, the
elasticity of patents with respect to the R&D stock is 0.60 and statistically significant. This
finding is broadly in line with the extensive empirical literature on patent production func-

tions.?? Also note that the coefficients on our measures of technological opportunity (Techopp)

31 Two points should be noted. First, In all the empirical specifications in the table, the estimate of the over-
dispersion coefficient, «, is significantly different from zero. This result rejects the Poisson model for patents
(e = 0) in favor of the Negative Binomial specification. Second, we also estimated the model using citation-
weighted patent counts to capture variation in patent quality, and conditioning on pre-sample patent citations.
The empirical results were very similar to those reported in the table.

32The R&D elasticity drops sharply if we include firm size in the regression, which is not surprising since R&D

stock is highly correlated with firm size. The case for including firm size here is not compelling. Conditional on
R&D, the decision to patent will depend on the incremental profits from patenting relative to protecting those
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are surprising — they suggest that the growth in ‘technological opportunity’ reduces current
patenting (the coefficients are about equal in magnitude and opposite in sign). Since T'echopp
measures the aggregate patent activity in the patent classes in which the firm operates, the
estimated coeflicients suggest a ‘fishing out’ interpretation — when aggregate patenting growth
is higher, the firm is less likely to generate patented innovations from its stock of R&D.3?
But some caution is warranted here, in view of our earlier finding that the growth in T'echopp

increased the market value of firms.
[TABLE 5 ABOUT HERE]

Turning now to the key variables of interest, the empirical results support the hypothesis
that both strategic patenting variables and technology spillovers affect the decision to patent.
First, there is strong evidence that greater fragmentation (higher transaction costs) affects the
decision to patent. Higher fragmentation is associated with a statistically significant increase
in patenting. This finding is consistent with the earlier evidence on semiconductor firms in
Ziedonis (2004). In the context of our model, this finding implies that greater fragmentation
increases the marginal value of accumulating a patent portfolio in order to enforce patent rights
(in the model, Hy¢ < 0). The point estimates are nearly identical, and statistically significant,
in the specifications without and with the the pre-sample patent control. The effect is large —
e.g., the point estimate in column (2) implies that a 5 percentage point increase in citations
concentration (equivalent to a 10 percent increase at the sample mean) reduces patenting by
12.8 percent.

Second, we find evidence that firms do less patenting, conditional on their R&D, when
they face technology rivals with higher patent propensities. The point estimate on Patprop is

negative and strongly significant in the specification with the pre-sample patents control. This

innovations by alternative means. This will depend in part on the incremental sales associated with patenting,
not the level of total sales which is what we observe.

33We experimented with alternative lags on Techopp and found that the ‘fishing out’ result is robust — higher
past growth in aggregate patenting reduces the firm’s patenting, conditional on its R&D. One possible alternative
explanation is that this result reflects resource constraints in a given field of expertise within the patent office. If a
backlog of patent applications in a field builds up, the probabilty that any given new patent application is granted
within a given time declines. Since our patent measure refers to patent grants, dated by their year of application,
this explanation would work only if firms delay their applications to the patent office as a consequence of the
backlog, which seems unlikely.
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finding is consistent with the view that firms are in a worse bargaining position in resolving
patent disputes with rivals that have large patent portfolios, which reduces their profitability
of patenting. The effect is substantial — the point estimate implies that a 10 percent increase in
the average patent propensity of technology rivals is associated with a reduction in patenting
by the firm of 4.5 percent.

Third, knowledge spillovers strongly affect patenting once we control for unobserved firm
heterogeneity (column 2). The coefficient on Spillover is positive and highly significant. The
spillover effect is large: a ten percent increase in spillovers is associated with a 6.4 percent
increase in patenting, holding the firm’s own R&D stock constant.

Finally, we test whether the policy shift toward software patentability increased the
impact of patent portfolios or fragmentation on the patenting behaviour of firms. To examine
this hypothesis, we estimate the patent equation separately for the pre-1994 and post-1994
periods (columns 3 and 4). The key results on R&D spillovers and the strategic patenting
variables hold for both sub-periods, but we do not find any significant change between the
two periods. While the point estimates on Spillover and Fragcites are larger in the later sub-

period, and the coefficient on Patprop is smaller, the differences are not statistically significant.
6.3 R&D Equation

Table 6 presents the parameter estimates for the R&D equation. Overall, the results are weaker
than for the market value and patent equations. The main result is that R&D investment is
higher when patent rights are more fragmented. The effect is statistically significant in the static
model without fixed effects (column 1), and holds up when we introduce dynamics or fixed firm
effects in the regression (columns 2 and 3, respectively). In the static specification with fixed
effects, the estimates imply an elasticity of R&D with respect to fragmentation about 0.14 — a
10 percent increase in fragmentation only raises raises R&D by about 1.4 percent. When we
introduce both fixed effects and dynamics in column 4, the point estimate is broadly similar
but no longer statistically significant.

As explained in Section 2, the effect of fragmentation on R&D is ambiguous, and depends
on how fragmentation affects the marginal value of patent accumulation as a means to reduce

enforcement costs (i.e., on the sign of H,¢). Our finding that fragmentation increases R&D

28



implies that H,; < 0, which is consistent with what we found in the patent equation. This
means that having a larger patent portfolio is more valuable when patent rights are more
fragmented among rival firms. This finding is consistent with our expectations, since tacit
forms of cooperation are less likely to develop in such cases, making a large patent portfolio

more important to avoid and resolving disputes.

[TABLE 6 ABOUT HERE]

We do not find much evidence that the patent propensity of technology rivals affects
R&D. While the point estimates of coefficient on Patprop are negative, as predicted by the
model, and robust to introducing dynamics and fixed firm effects in the model (columns 2 and
3, respectively), they are not generally statistically significant.

Finally, we find that knowledge spillovers do not affect the R&D decision, once we control
for firm fixed effects. While the coefficient on the Spillover variable is positive when we include
only industry fixed effects, the point estimate becomes negative but statistically insignificant
once we add firm fixed effects (column 3). The latter is the preferred specification, as the
firm fixed effects are highly significant (p-value <.001). This does not contradict the model,
however. The predicted impact of spillovers on R&D is ambiguous, as it depends on the sign of
the cross derivative in the knowledge production function, ¢,,. Taken at face value, the finding
here suggests that spillovers do not materially affect the marginal product of own R&D, even
though our earlier findings that spillovers strongly increase the number of patents and market
value show that spillovers do raise the average product of the recipient firm’s R&D.

Finally, we note that the coefficients of the time dummies (not reported) show no evidence
that R&D changed systematically over the sample period. We cannot reject the hypothesis that
these coefficients are jointly zero in any of the specifications. This indicates that the expansion
of patentability over software during the 1980s and early 1990s was not associated with any
major changes in R&D investment by these software firms, at least up to the end of our sample
period. This finding contradicts the claim by Bessen and Hunt (2003) that the expansion of
software patenting led firms to reduce R&D over this period. Of course, whether the stronger

patent rights for software will intensify innovation in this area remains an open question.
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7 Robustness Analysis

We conducted a series of robustness checks on the baseline results. In this discussion we focus
on the market value and patent equations, where the baseline results were much sharper and
more significant than in the R&D equation.

Our sample includes both ‘software’ companies specialising in packaged software (SIC7372)
and ‘hardware’ firms classified in other related sectors (e.g. computers) but doing significant
levels of software patenting. The incentives for strategic patenting may differ for these two
types of firms — hardware firms that are vertically integrated into software patenting (e.g.,
semiconductor firms) are more likely to have large capital investments in plant and equipment
that are exposed to ex post hold in the even of patent litigation, and thus particularly inclined
to accumulate patents to defend against this danger and preserve freedom to operate in R&D
(Hall and MacGarvie, 2010). We run two separate checks to examine robustness of our baseline
results.

First, we check whether our findings are skewed by the presence of a few dominant
firms active in software patenting but not specializing in packaged software. The top four
of these firms — Cisco, Compaq, IBM and Intel —account for 82 percent of all patents, and
71 percent of software patents, in our sample. We re-estimate the baseline specifications of
the market value and patent equations including both firms in packaged software and other
sectors, but excluding these four companies (they are kept in for purposes of measuring the
pool of technology spillovers for all firms, however). The results in Panel A of Table 6 show
that the baseline results hold up. The sign and magnitudes of the estimated coefficients on
the strategic patenting variables and knowledge spillover variables are similar to the baseline
estimates in column 2 of Tables 3 and 4.

Second, we check whether there are significant differences in the role of strategic patenting
and knowledge spillovers between the ‘software’ companies specialising in packaged software
and the ‘hardware’ firms classified in other sectors. To do this, we re-estimate the baseline
specifications but now add interactions of the key variables of interest — Fragcites, Patprop

and Spillover — with a dummy variable for software (SIC7372) firms.>* Panel B in Table

341t is interesting to note that the ‘software’ firms do not more heavily specialize in software patents (patent
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6 reports the presents the results. The negative impact of fragmentation on market value
is not statistically different for hardware and software firms. Moreover, patenting for both
type of firms is strongly and positively related to fragmentation, as in the baseline estimates,
implying that patent accumulation reduces enforcement costs more when fragmentation is
greater (H,r < 0). However, consistent with the hypothesis above, we find that patenting by
rivals reduces a firm’s market value for hardware firms while the effect for software firms is
smaller and not statistically significant (due to the positive interaction coefficient for software
firms). But the negative effect of Patprop on patenting is the same for both software and
hardware firms. Finally, we find that knowledge spillovers are much stronger for hardware
firms than for those specializing in packaged software. In fact, we find significant knowledge
spillovers in the market value only for hardware firms, and though they are present in the
patent equation for both types of firms, they are much larger for hardware companies.

The third robustness exercise it to check whether the sharp bubble in the stock market
that occurred at the end of our sample period skews the results, especially for market value.
During the two years 1998-99, the mean value of firms in our sample rose by 20.8 percent,
which is more than 37 percent of its total change over the entire 19 year sample period. To
check this, we re-estimate the baseline specification dropping the years 1998 and 1999. Panel
C in Table 6 shows that the estimated coefficients are generally robust. The main difference is
that the negative coefficient on Patprop in the market value equation declines and is no longer
statistically significant.

Fourth, we examine whether the estimates are robust to allowing for the potential endo-
geneity of the patent propensity of rivals and R&D spillovers. In the baseline regressions we use
the lagged values of these measures (Patprop;—1 and Spillover;_1) in order to remove the effect
of contemporaneous shocks. Nonetheless, there could be serial correlation in the shocks driving
patenting and market value that might still contaminate the estimates. To address this, we

re-estimate the model using the second lags of Patprop and Spillover as instrumental variables

class GO6F) than the ‘hardware’ firms in our sample. Software patents account for 39 and 42 percent of total
patenting for the two types of firms, respectively. Ideally, we would like to be able to disaggregate each firm’s
patents into software and other patents and to incorporate both types into the analysis. Unfortuntately, the
data were not rich enough to allow us to get informative results with this approach.
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for their lagged values. We use an IV Poisson model for this purpose.?® As Panel D in Table
6 shows, the IV estimated coefficients of Fragcites and Spillover for both the market value
and patent equations are very similar to the baseline coefficients in Tables 3 and 4. However,
using IV we find there is no longer any significant effect of Patprop on either the market value
or patenting behaviour of firms.

The final issue involves the role of product market competition. The model in this paper
focuses on how fragmentation of patent rights and patent portfolio accumulation by rivals
affect patent enforcement costs, and thereby the firm’s market value, patenting and R&D.
However, the impacts we find for our strategic patenting variables could be due, at least in
part, to the effects of product market competition rather than patent enforcement costs. For
example, we find that high concentration of patent rights (low Fragcites) increases market
value. But this effect could be due instead to high concentration of sales (less intense product
market competition), if the concentration of patent rights is positively correlated with the
concentration of sales. Our finding that greater fragmentation increases the patenting might
also be explained in this way if patent accumulation is more important where product market
competition in more intense. The effects we find for Patprop could also be explained by
product market competition, since we would expect patenting by rivals to reduce the firm’s
market value, and lower its patenting (if rivals’ patents are a strategic substitute).

To address this alternative interpretation, we need to control for product market com-
petition in the baseline regressions. To this end, we construct a measure of sales concentration
(SalesCon) for each firm in each year, which is equal to a weighted average of the four-firm
sales concentration in each of the four-digit SIC classes in which the firm operates. The sales
concentration data are taken from the U.S. Bureau of the Census. The weights are constructed
from Compustat information on the distribution of firm sales across lines of business which are

reported by firms from 1993 onwards.36

35The appropriate lag depends on the form of the serial correlation in the market value (or patent) equation.
If it is an M A(1) process, using the second lag as an instrument will be consistent. To check further, we tried
using the third lag as the instrument, which would be appropriate if the error is an M A(2) process. The results
are similar to those reported in the table. We use the IV Poisson model for this experiment because there is no
readily available software for the IV Negative Binomial model.

30For details of the line of business data, see Bloom, Schankerman and van Reenen (2013). For this computation
we need to assume that distribution of a firm’s sales across lines of business in 1993 applies to the earlier 1980-92
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Panel E in Table 6 reports the coefficients on the main variables from the baseline speci-
fications with this new control variable. The key finding here is that the estimated coefficients
on the strategic patenting variables, Fragcites and Patprop, and R&D spillovers in the market
value and patent equations are very similar to (and not statistically different from) the baseline
coefficients in column 2 in Tables 3 and 4. This indicates that our conclusions about the role of
strategic patenting and spillovers are not simply picking up the effects of variations across firms
in product market competition.?” In addition, the positive coefficient on sales concentration
in the patent equation indicates that patents are, perhaps surprisingly, more important for
appropriating innovation rents when the market is more concentrated. Lastly, the coefficient
on sales concentration is negative and significant in the market value equation. The most plau-
sible explanation is that entry (which reduces concentration) occurs in more profitable lines of
business and that, despite our demand-side controls, we may not be fully accounting for their

unobserved ‘potential profitability.’

8 Concluding Remarks

This paper studies the impact of strategic patenting and technology spillovers on R&D invest-
ment, patenting activity and market value of firms in the computer software industry. Software
is a classic example of a complex technology in which cumulative innovation plays a central role,
and where there is growing concern that patent thickets may impede innovation. We develop a
model to analyse and estimate the impact of strategic patenting and technology spillovers. The
model incorporates two distinct aspects of strategic patenting — patent portfolio size to capture
the firm’s bargaining power in patent disputes and licensing, and fragmentation of patenting

among rivals to capture the transaction costs of enforcing those patent rights. Using panel data

period. The four-digit SIC concentration data are taken from the U.S. Censuses of Manufacturing, Retail Trade
and Whole Trade. Some censuses were missing data for selected SICs (due to redefinitions of sectors), in which
cases we interpolated. For details, see Appendix 2.

3TTwo points are worth noting. First, our measures of product market concentration (SalesCon) and frag-
mentation of patent rights (Fragcites) is very low, only -0.06. Second, following Bloom, Schankerman and Van
Reenen (2012), we also use the information on the distribution of sales across SIC industries to construct a
measure of product market distance between firm pairs in our sample. This is constructed as the uncentered
correlation between the sales distributions of firm pairs (as in equation 4, with W; defined as the distribution
of firm i’s sales across SIC industries). The correlation across firm pairs between the technology and product
market distance measures is only 0.17, confirming that the technology distance measure used in the construction
of our Patprop and Spillover measures does not simply reflect product market interaction.
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for the period 1980-99, we find clear evidence that strategic patenting and technology spillovers
are present.

There are four key empirical findings in the paper. First, there are large, positive technol-
ogy spillovers from R&D for software firms. Second, patenting by technology rivals reduces the
firm’s R&D investment, patenting and market value. Third, greater fragmentation of patent
rights increases both R&D and patenting by the firm — reflecting greater need to have an ar-
senal of patents to resolve disputes when there are many players — but it lowers market value
because transaction costs are higher. Finally, there is a large patent premium in the stock mar-
ket valuation of these software firms, which accounts for about twenty percent of the overall
private returns to R&D investments.

These findings show that, contrary to often-heard claims, patenting in software appears
to be valuable for firms. Our evidence suggests that software firms in our sample are not trapped
in a bad equilibrium of high patenting, and that collective action to reduce patenting would
not raise their market value. However, the welfare implications of our results are not clear-
cut. Insofar as strategic patenting imposes negative externalities on other firms — by increasing
the fragmentation of patent rights and the need to patent defensively — the level of patenting
may well be socially inefficient. Recent research offers some evidence that patenting impedes
cumulative innovation, at least in the specific, but important, field of human genetic research
(Murray and Stern, 2007; Huang and Murray, 2009; Furman and Stern, 2010). Unfortunately,
we are still a long way off from having a full assessment of how these social costs stack up

against the incentive effects of stronger patent rights.
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Appendix 1. Analysis of the Model’s Predictions

We use the model to derive predictions about how R&D and patenting by the technology
rival firm 7, and the fragmentation of patent rights, affect the optimal choices of the focal firm
0. The firm makes two decisions: the level of R&D investment and the patent propensity. The

decision problem is

max V = II(0g¢(ro, 7)) — ro — {cpo + H(z, f)}d(ro,7r)

T0,P0

Recall that kg = ¢(ro,7-) and kr = ¢(r;,70) also enter the function H(z, f) since x = Zfii.

The first order conditions for the focal firm are

k
Vo = 00T — oy — H} = (08 ) (ke — hod3)Hy =1 =0
k
Voo = kof(A= DI} —c— (CZm)H,} =0

T

where superscripts on the functions II and ¢ refer to the firm, the subscripts denote partial
derivatives with respect to the arguments in II (one argument only), H and ¢.
To simplify notation, we supress the arguments in functions. Differentiating totally we

obtain
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Second order conditions imply Vi, <0, V, , <0, and A=V, Vooro — V2 >0.

T0Po

In order to sign some of the predictions (details below), we make two assumptions:

Al: (a) k-¢® — ko3 > 0 and (b) kod] — k-0 > 0

. Hwac
A2: I‘Hﬂ <1

Assumption Al says that a firm’s R&D has a larger impact on its own knowledge pro-
duction (in elasticity terms) than it does on its rival’s knowledge (part (a) applies to firm 0,
part (b) to firm 7). This seems natural since a firm’s own R&D is presumably more closely
tied to its innovation activity than a rival’s (and only a part of the rival’s activity may in fact

be relevant). Assumption A2 says that the elasticity of the marginal enforcement cost function
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(H,) with respect to portfolio size is less than one — i.e., that diminishing returns to portfolio

accumulation are not ‘too strong’.

From the first order conditions, and assumptions A1l and A2, we can derive the following

expressions:
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where A =~ (k3(A2L010h) — 2ko(665 + 6760) + 2ho(@68 + -0367)}.

Using Cramer’s rule and the cross derivatives derived above, we get the following pre-
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dictions:
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Finally, using the envelope theorem we get
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Two final remarks on the predictions are in order. First, as indicated above, we cannot
unambiguously sign %—’;9 and %—p]?because they depend on the sign of H,y. This reflects the
fact that a rise in fragmentation has two effects: 1) it increases the level of enforcement costs
and thus reduces the profit from any given level of R&D and patenting, but 2) it changes the

marginal value of accumulating patents and thus the incentive to do R&D and patenting (this

latter effect depends on the sign of H,y). However, using the cross partials V). and V, s , we
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can show that 87"0 > 0 implies H,; < 0, and similarly 6 %P0 > ( implies H,; < 0. We use this

fact in the analysis of the empirical results in the paper. However, we cannot infer the sign of
gvf1fdr0 <0 ora—pjﬁ’<0

Second, the impact of technology rival’s R&D on the market value of the firm focal

firm, gTYS’ is ambiguous because a rise in the rival’s R&D has two countervailing effects: 1) it

increases knowledge spillovers for the focal firm, raising its market value, but 2) the increase

in the rival’s kowledge (and patents) raises enforcement costs for the focal firm and reduces its

market value. In the econometric specification, however, we control for rivals’ patent propensity

(ratio of patent to R&D stocks) — turning off the second effect. Thus our empirical prediction

is 8r °>0.

A similar argument applies to the impact of technology rival’s R&D on patenting by the
firm focal firm, a . This effect is ambiguous because the rise in rival’s R&D increases knowledge
spillovers for the focal firm (which increases its patenting), but also raises enforcement costs
for the focal firm, reducing the profitability of patenting. In the econometric specification,
however, we control for rivals’ patent propensity, so we get only the first effect operating. Thus

our empirical prediction is p =0 2> 0.
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Appendix 2. Data Construction

Construction of the Sample

We began with two main data sets: the CorpTech data (purchased from Corporate
Technology Information Services) and the GO6F (‘software’) patent database. The CorpTech
data cover more than 15,000 companies (parent companies and subsidiaries) which report some
involvement in a software-related activity (product classification) over the period 1990-2002.
Of the firms covered by CorpTech, 12 percent are publicly traded firms. We focus exclusively on
public firms in order to use market value and other balance sheet information for the empirical
analysis.

The first step was to match subsidiaries to their parent companies. Subsidiaries and
parent firms are identified in the CorpTech data by ‘type of ownership’ variables. The CorpTech
data set includes the firm identifier (CUSIP), but this information was missing for many firms.
All public companies with missing CUSIP’s were checked manually (primarily from company
websites) and the information was added where available.

The second step was to match the firms in CorpTech (both parents and subsidiaries) to
the assignees in the GO6F patent database. This first required that we get the CUSIP for the
assignee of each GO6F patent. This was done by matching the GO6F patent number to the
NBER database. The next step was to match the GO6F patents to the CorpTech database
using the company CUSIP. This matching was done under the supervision of Josh Lerner at
the Harvard Business School. The matching was done for each CorpTech firm using name
recognition software and followed up by two independent rounds of manual checks.

For this study, we need to match the data for the public firms in CorpTech to all of their
patents, not just their GO6F patents. One could do so in principle by matching the CorpTech
and the NBER patent data, using the CUSIP in each data set. The NBER data include all
USPTO patents (up to 1999) and CUSIP numbers from the Hall, Jaffe and Trajtenberg (2004)
match, which is based on publicly registered firms in 1989. However, this match is antiquated,

especially when considering the software industry which grew so rapidly in the 1990s. We found
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1,198 public firms with CUSIP’s in CorpTech that do not show up in the NBER dataset. These
are firms that were born or became public after 1989. So while the second step above provides
a good match of firms and their GO6F patents, there remained no reliable match of firms to
their non-software patents. If we were to use this match and include all firms with at least one
GOG6F patent, there would be 70 firms with a total of 18,628 software patents and 127,553 total
patents. The vast majority of these firms have very low software to total patent ratios. Using
our 45% software to all patent ratio cutoff, we would be left with only 15 firms covering 11,561
software patents and 28,041 total patents. Using the 50% cutoff (which excludes IBM), there
would remain 14 firms with 4,905 software patents and 8,736 total patents.

It is clear that the match using the 1989 ownership patterns in the NBER patent database
was outdated for our purposes (many software firms were established or became public after
1989), so the third step was to do a new match between the CorpTech and NBER databases.
The focus was to identify patents in the NBER database whose assignees were public firms
either born or becoming public after 1989. The matching was done manually, as follows.
For each of the 1,198 public companies in the CorpTech data with CUSIP numbers that do
not appear in the NBER data, we searched the NBER database for matching assignees. This
match was done using the ‘Soundex’ command in SAS to find similar sounding names (including
spellings, different abbreviations etc.). This procedure yielded 514 additional name matches.
Because many similar sounding names may not be the same firms at all (e.g. Andromedia
vs Andromeda; FoundryNetworks vs FoundryManagement, etc.), each name that differed was
manually checked (using company websites) to see if the ‘matched’ companies were in fact the
same. Fifty of the 514 provisional matches were discarded, leaving 464 confirmed firm matches.
Finally, for all these firms, both the names of the parent and all its subsidiaries were checked
in the NBER patent assignee list. This procedure results in the final sample of 445 firms with
at least one GO6F patent. We then applied the 45% threshold for the ratio of GO6F to total
patents in order to identify what we call ‘software firms’. This yielded the final sample of 121

firms used in the paper.
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Construction of the Sales Concentration Measure

To calculate SalesCon we use both Compustat data on the self-reported sales of each
firm in different lines of business, and U.S. Census data on SIC-level concentration ratios. A
line of business as reported by Compustat may correspond to a single four digit SIC industry or
multiple SICs. The available data set lists up to two SICs for each line of business. Following
Bloom, Schankerman and van Reenen (2013), if two SICs are listed we attribute 75% of the
firm’s sales to the primary SIC and 25% to the secondary SIC. For each SIC industry ‘s’, we

calculate the sales of firm 7 in line of business s in year ¢, y;s, total firm sales, yir = > Yist,

st
(Zs ﬂist - 1)

Data are available from 1993, so for earlier years we use 1993 shares. We then obtain

and define 3, = %’: which is the share of firm ¢’s sales that fall into industry s in year ¢

the four firm concentration ratio for each SIC industry, C4s, as reported in the U.S. Censuses
of Manufacturing, Services, Wholesale Trade, and Retail Trade (distinct publications) for the
years 1982, 1987, 1992 and 1997. Since the industry classification system in 1997 changed from
SIC to NAICS, we use the concordance provided by the Census for imputation. We interpolate
values for intermediate years.

We then calculate SalesCon for firm ¢ in year ¢ as the weighted average of the four firm

concentration ratios across the SICs in which the firm participates

C4it = Z BistC4st
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Table 1. Predictions of the Model

Variable: Rival's Patent

Fragmentation, f Propensity, pt Rival's R&D, r,
Market Value, V, 0Vy/of<0 0V,/0p.<0 oVy/or.>0
Patent Propensity, pg dp,/of s0° 0py/9p. <0 0py/or.>0
R&D, r, or,/of s0° Ory/dp, <0 Ory/dr, S0

*1f dpo/0f > 0, we can infer that Hy<0. If dpo/9f <0, one cannot infer the sign of Hys
b-|f dro/0f >0, we can infer that H,:<0. If dpo/0f >0, one cannot infer the sign of Hy.



Table 2. Descriptive Statistics

Variable: Mnemonic Mean Median Std. Dev.
Market Value \Y 2,462 97 10,886
Tobin's Q V/A 6.5 4.3 6.7
R&D R 188.0 14.7 739.0
R&D Stock/Assets G/A 5.7 2.2 18.2
Patents (>0) P 61.9 2.0 245.3
Patent Stock/Assets PS/A 0.62 0.17 1.44
Fragmentation Index Fragcites 0.53 0.62 0.25
Rivals' Patent Propensity Patprop 0.080 0.075 0.064
R&D Spillovers Spillover 20,717 20,067 11,615

Notes: The sampleis an unbalanced panel covering 121 firms over the period 1980-1999. Cells
are computed using non-missing observations. Dollar figures are 1999 values in millions.



Table 3. Market Value Equation

(1) (2) (3) (4)

Dependent Patent Patent Patent
Variable: Baseline Premium Premium Premium
log(V/A) 1980-99 1980-99 1980-94 1995-99
Fragcites,, -0.344** -0.460** -0.188 -0.713**
(0.11) (0.11) (0.16) (0.16)
log Patprop, -0.129%* -0.122%* -0.013 -0.276**
(0.074) (0.073) (0.110) (0.120)
log Spillover,,; 0.167** 0.187** 0.168** 0.155*
(0.050) (0.049) (0.074) (0.091)
log Firm Sales, 0.185** 0.196** 0.021 0.253**
(0.065) (0.065) (0.120) (0.067)
log Firm Sales,» -0.178** -0.160** -0.012 -0.183**
(0.062) (0.062) (0.120) (0.063)
log TechOpp,. 2.301%* 2.449%* 5.025%* 0.670
(0.70) (0.70) (0.95) (0.84)
log TechOpp,.» -2.202** -2.377** -4.842** -0.740
(0.68) (0.68) (0.92) (0.80)
(G/A)a 0.092** 0.074** 0.045** 0.0139**
(0.013) (0.014) (0.024) (0.035)
(G/A)¢> -0.003** -0.002** -0.002** -0.008**
(0.0005) (0.0004) (0.001) (0.003)
(G/A)3.1x 10° 0.027** 0.024%** 0.020%** 0.195*
(0.005) (0.005) (0.010) (0.110)
(G/A)*.1x 10° -0.109** -0.099%** -0.085** -2.330
(0.020) (0.018) (0.038) (1.46)
(G/A)?. 41 x 10° 0.149%* 0.138%* 0.120** 10.300
(0.027) (0.025) (0.046) (6.70)
(PS/A)q 0.712** 1.373** 0.967**
(0.21) (0.40) (0.22)
(PS/A)%, -0.348** -0.846** -0.622**
(0.16) (0.30) (0.15)
(PS/A)3,. 0.065* 0.202** 0.143**
(0.039) (0.079) (0.038)
(PS/A)* 4 -0.005 -0.021%* -0.013**
(0.004) (0.008) (0.003)
(PS/A)>., x 10° 0.146 0.734** 0.377**
(0.11) (0.29) (0.10)
Industry dummies Yes Yes Yes Yes
(p-values) (<0.01) (<0.01) (<0.01) (<0.01)
Year dummies Yes Yes Yes Yes
(p-values) (0.066) (0.073) (0.47) (0.10)
No. Observations 865 865 399 466
R? 0.49 0.51 0.61 0.52

Notes: Tobin's Q is defined as market value of equity plus debt, divided by the
stock of fixed capital. Estimation is by OLS. Newey-West standard errors (in
brackets) are robust to heteroskedasticity and first-order serial correlation.
Dummy variables are included for observations where Fragcites or lagged R&D
stock is zero. * denotes significance atthe 5% level, ** at the 1% level.



Table 4. Patent Equation

(1) (2) (3) (4)
Dependent No Initial Initial Initial Initial
Variable: Conditions  Conditions  Conditions  Conditions
Patent Count 1980-99 1980-99 1980-94 1995-99
Fragcites, 2.540%** 2.553%* 2.171%* 2.785%*
(0.38) (0.34) (0.42) (0.47)
log Patprop,, -0.210 -0.453* -0.808* -0.501
(0.24) (0.22) (0.33) (0.41)
log Spillover, 0.106 0.637** 0.542** 1.040%**
(0.10) (0.12) (0.15) (0.23)
log R&D Stock, ; 0.761** 0.599** 0.578** 0.626**
(0.036) (0.043) (0.065) (0.052)
log TechOpp, 4 -4.238* -6.328** -9.394** -6.686**
(2.07) (1.83) (3.14) (2.21)
log TechOpp,., 4.593* 5.982%* 9.627** 5.386**
(2.08) (1.80) (3.06) (2.04)
log Presample Patents 0.368** 0.346** 0.272**
(0.052) (0.076) (0.073)
Overdispersion 1.161** 1.336** 1.005** 1.423**
(0.14) (0.12) (0.15) (0.17)
Industry dummies Yes No No No
(p-values) (<0.01)
Year dummies Yes Yes Yes Yes
(p-values) (<0.01) (<0.01) (0.028) (<0.012)
No. Observations 991 991 472 519
Pseudo R’ 0.27 0.26 0.27 0.27

Notes: Estimation is based on the Negative Binomial Model. Standard errors (in
brackets) are robust to heteroskedasticity. Adummy variableis included for
observations where Fragcites is zero. Theinitial conditions in columns (2)-(4) are
estimated with the 'pre-sample mean scaling approach' of Blundell, Griffith and
Van Reenan (1999). * denotes significance at the 5% level, ** at the 1% level.



Table 5. R&D Equation

Dependent
Variable:
log R&D

Fragcites, ,

log Patprop,,

log Spillover,,

log R&D, 4

log Firm Sales, ;

log Firm Sales,,

log TechOpp,,

log TechOpp,.,

Industry dummies

(p-values)

Firm dummies
(p-values)

Year dummies

(p-values)

No. Observations
RZ

(1) (2) (3) (4)
Static, no  Dynamic, no Static Dynamic
firm effects firm effects firm effects firm effect:
1980-99 1980-99 1980-99 1980-99
1.016** 0.198** 0.281** 0.124
(0.17) (0.10) (0.17) (0.14)
-0.033 -0.060 -0.091 -0.075
(0.100) (0.056) (0.075) (0.059)
0.214** 0.104** -0.156 -0.102
(0.096) (0.036) (0.140) (0.096)

0.756** 0.410**
(0.033) (0.058)
0.952** 0.467** 0.709** 0.496**
(0.078) (0.048) (0.075) (0.075)
-0.219** -0.284** 0.029 -0.077*
(0.069) (0.039) (0.065) (0.048)
0.906 -0.161 -0.070 -0.283
(1.03) (0.54) (0.82) (0.63)
-1.162 0.087 -0.074 0.173
(1.04) (0.51) (0.77) (0.61)
Yes Yes No No
(<0.01) (<0.01)
No No Yes Yes
(<0.01) (<0.01)
Yes Yes Yes Yes
(0.88) (0.52) (0.70) (0.71)
866 866 866 866
0.90 0.96 0.96 0.97

Notes: Estimation is by OLS. Newey-West standard errors (in brackets) are robust
to heteroskedasticity and first-order serial correlation. The sample includes only
firms which performed R&D continuously in atleast two adjacent yearrs. A
dummy variableis included for observations where Fragcites is zero. * denotes
significance at the 5% level, ** at the 1% level.



Table 6. Robustness Checks

Panel A. Exclude Top Four Patenting 'Hardware' Firms

Equation: Fragcites Patprop Spillover

Market Value -0.465** -0.131* 0.139*
(0.110) (0.072) (0.063)

Patents 2.342** -0.489* 0.797**
(0.39) (0.25) (0.20)

Panel B. Hardware vs. Software Firms

Equation: Fragcites Patprop Spillover

Hardware Software Hardware Software Hardware Software

Market Value -0.344**  -0.157 -0.145*  0.107* 0.129*  0.117
(0.14)  (0.19) (0.073)  (0.049) (0.620)  (0.084)
Patents 2.795%*  -0.718 -0.603*  0.027 0.638**  -0.493
(0.55)  (0.63) (0.26)  (0.13) (0.15)  (0.26)

Panel C. Exclude Stock Market Bubble, 1998-1999

Equation: Fragcites Patprop Spillover

Market Value -0.306** -0.011 0.179**
(0.12) (0.084) (0.056)

Patents 2.268** -0.631* 0.604**
(0.38) (0.26) (0.10)

Panel D. Instrumental Variables Estimates

Equation: Fragcites Patprop Spillover
Market Value -0.447** 0.038 0.184**
(0.092) (0.110) (0.040)
Patents 3.016** 0.203 0.443*
(Poisson) (0.40) (0.53) (0.21)

Panel E. Control for Product Market Concentration

Equation: Fragcites Patprop Spillover Salescon

Market Value -0.459** -0.076 0.184** -1.235%*
(0.110) (0.072) (0.051) (0.30)

Patents 2.251** -0.333 0.600** 3.318**

(0.37) (0.24) (0.13) (0.63)




Table A. List of Sample Firms (First Half)

CUSIP SIC Company Name CUSIP SIC Company Name

004334 3663 Accom, Inc. 205638 7372  Compuware Corp.

004930 7372 Activision, Inc. 206186 7372 Concord Communications, Inc.
00651F 3661 Adaptec, Inc. 206710 3571 Concurrent Computer Corp.
00724F 7372 Adobe Systems, Inc. 208547 7372  Consilium, Inc.

00826M 7372  Affinity Technology Group, Inc. 232462 7372 CyberCash, Inc.

36384 7372 Ansoft Corp. 233326 7372 DST Systems, Inc.

37833 7372  Apple Computer, Inc. 238016 3625 Data Translation, Inc.

37935 3829 Applied Microsystems Corp. 253798 3577 Digi International, Inc.
43412 3661 Asante Technologies, Inc. 25387R 3577 Digital Video Systems, Inc.
04362P 7372 Ascential Software Corp. 281667 7372 J.D. Edwards & Company
45327 7372 Aspen Technology, Inc. 292475 3669 Emulex Corp.

52754 7379 Auto-trol Technology Corp. 36227K 7372  GSE Systems, Inc.

52769 7372 Autodesk, Inc. 362555 3669 Gadzoox Networks, Inc.
05367P 7372 Avid Technology, Inc. 370253 7372 General Magic, Inc.

55921 7372 BMC Software, Inc. 40425P 7372  HNC Software Inc.

73308 7375 Be Free, Inc. 451716 7372 IKOS Systems, Inc.

73325 7372 BEA Systems, Inc. 45666Q 7372 Informatica Corp.

79860 7379 BellSouth Information Systems 45812Y 7371 Integrated Surgical Systems, Inc.
109704 7372 Brio Technology, Inc. 458140 3674 Intel Corp.

111412 7372 BroadVision, Inc. 458153 7372 IntelliCorp, Inc.

12487Q 7375 CCC Information Services Inc. 458176 7372  Starfish Software, Inc.
126349 7372 CSG Systems, Inc. 458683 7371 Intergraph Corp.

127387 7372 Cadence Design Systems, Inc. 459200 7372  IBM Corp.

14167A 7372 MCS-Simione Central, Inc. 46060X 7372 Internet Security Systems, Inc.
162813 7372 CheckFree Corp. 461202 7372 Intuit, Inc.

17275R 3669 Cisco Systems, Inc. 46145F 7372 ITG, Inc.

177376 7372  Citrix Systems, Inc. 465754 7372 i2 Technologies, Inc.
204493 3571 Compaq Computer Corp. 514913 7372 Landmark Graphics Corp.
20482G 7375 CompuServe Interactive Services |51506S 7372  Landmark Systems Corp.
204912 7372 Computer Associates International |524651 7372  Legato Systems, Inc.
204925 7372 Computer Network Tech Corp. 530129 7372 Liberate Technologies




Table A. List of Sample Firms (Second Half)

CusIp SIC Company Name CUsIP SIC Company Name

545700 7372 Lotus Development Corp. 826565 7372 Sigma Designs, Inc.
553903 3572 MTI Technology Corp. 827056 7371 Silicon Graphics, Inc.
555904 7372 GLOBEtrotter Software, Inc. 827068 7372  Silicon Valley Research, Inc.
556100 7372 Macromedia, Inc. 834021 3571 SofTech, Inc.

587200 7372  Mentor Graphics Corp. 852192 7372 Spyglass, Inc.

589378 7371 Mercury Computer Systems, Inc.  [859205 7372  Sterling Commerce, Inc.
589405 7372 Mercury Interactive Corp. 86211A 7372 Storage Computer Corp.
589981 7372 Merge Technologies Inc. 862685 3577 Stratasys, Inc.

594918 7372 Microsoft Corp. 866810 3572  Sun Microsystemes, Inc.
604567 7371 MIPS Technologies, Inc. 871130 7372 Sybase, Inc.

641074 7372 Nestor, Inc. 871503 7372  Symantec Corp.

64108P 7375 Netcentives Inc. 871607 7372 Synopsys, Inc.

641149 7372 Netscape Communications Corp. (871926 7372  SystemSoft Corp.
64120N 3577 Network Computing Devices, Inc. (879101 8742 |EX Corp.

669937 7372 Novadigm, Inc. 879516 7372 Telescan, Inc.

670006 7372  Novell, Inc. 885535 3669 3Com Corp.

68370M 7372  Open Market, Inc. 88553W 7372  3DO Co. (The)

68389X 7372 Oracle Corp. 887336 7372 Timeline, Inc.

699173 7372 Parametric Technology Corp. 895919 3577 Trident Microsystems, Inc.
705573 7372 Pegasystems, Inc. 896121 3669 Tricord Systems, Inc.
712713 7372 PeopleSoft, Inc. 903891 3571 Ultradata Systemes, Inc.
719153 7372 Phoenix Technologies Ltd 923429 7372  Verifone, Inc.

741379 7372  Preview Systems, Inc. 923436 7372  VERITAS Software Corp.
743312 7372 Progress Software Corp. 92343C 7372 Verity, Inc.

74838E 7372 Quickturn Design Systems, Inc 92672P 7372  Viewpoint Corporation
750862 3577 Rainbow Technologies, Inc. 973149 7372  Wind River Systemes, Inc.
75409P 7372 Rational Software Corporation 980903 7372 Workgroup Technology Corp.
811699 3663 SeaChange International, Inc. 984149 7372 Xybernaut Corp.

813705 7372 Secure Computing Corp. G8846W 7372 3Dlabs, Inc.

815807 7372 Segue Software, Inc.

The SIC codes are defined as follows: 3571 Electronic Computers, 3572 Computer Storage Drives, 3577 Computer
Peripheral Equipment, 3625 Relays and Industrial Controls, 3661 Telephone and Telegraph Apparatus, 3663 Radio &
Television Broadcasting and Communications Equipment, 3669 Communication Equipment, 3674 Semiconductors and
Related Devices, 3829 Measuring and Controlling Devices, 7371 Computer Programming Services, 7372 Pre-packaged
Software, 7375 Information Retrieval Services, 7379 Computer Related Services, 8742 Management Consulting

Services.
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