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Abstract

Motivated by the apparent discovery of Edgeworth Cycles in many retail gasoline markets,

this article extends the theory of Edgeworth Cycles along several key dimensions, including

models of fluctuating marginal costs, differentiation, capacity constraints and triopoly. A com-

putational approach to search for Markov perfect equilibria is taken. Edgeworth Cycles are

found in equilibrium in many situations, and the shape of the cycles are found to carry informa-

tion about underlying competitive intensity. Cycles in triopoly exhibit interesting coordination

problems such as delayed starts and false starts.

1 Introduction

Recently, there has been a great deal of interest from economists about the high-frequency price

cycles discovered in a number of retail gasoline markets in Canada, the United States, Australia,

New Zealand and several European countries (Noel (2007a, 2007b) Eckert (2002, 2003, 2004),

Wang (2005a, 2005b), Allvine and Patterson (1974) and Castanias and Johnson (1993)). The price

cycles are surprising at first glance...they are rapid, tall, and sharply asymmetric. Starting from a

relatively high level of prices, prices at virtually all stations within a market fall by a small amount

each day, typically over the course of a week or a month. Then when markups become sufficiently
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low, firms suddenly and almost simultaneously increase prices back to the original high price, before

prices start to gradually fall again. Many of these authors have argued that the price cycles are

the theoretically possible (but in practice, seemingly implausible) Edgeworth Cycles of Maskin and

Tirole (1988).

To see the visual similarity between the empirical cycles and the theoretical Edgeworth Cycles,

compare Figures 1 and 2. Figure 1, taken from Noel (2007b), shows retail prices for a representative

major branded station and a representative independent along with the wholesale (“rack”) price

for the city of Toronto during 2001. The interval between consecutive data points is just 12 hours.

The graph clearly shows the asymmetry in retail price changes. When a station increases price, it

does so by 13% on average and others follow the increase almost immediately. In contrast, when a

station decreases price, it does so by less than 2% per period and the overall decrease is spread out

over many periods. The pattern is very similar to that in a theoretical Edgeworth Cycle, which is

depicted in Figure 2.1 I defer to these papers for evidence that the empirical cycles are consistent

with Edgeworth Cycles.

––––––––– insert figure 1 about here (immediately above figure 2) –––––––—

––––––––– insert figure 2 about here (immediately below figure 1) ––––––––

A common and valid criticism of the empirical papers, however, is that the market for retail

gasoline does not conform perfectly to the setting of the theoretical Maskin and Tirole model.

Therefore it is not clear that Edgeworth Cycles can even exist in retail gasoline markets. The

standard Maskin and Tirole model that generates Edgeworth Cycles assumes a dynamic, symmetric

Bertrand duopoly game with perfectly homogeneous goods.2 The market for gasoline, however, is

1I discuss the mechanism in more detail below. The figure is drawn for a specific demand example with zero
marginal costs.

2Maskin and Tirole also considered a capacity constrained version of the model.

2



not perfectly homogeneous. It is not a duopoly. Marginal costs are not constant, firms are not

identical, and so on.

The strongest concern perhaps relates to the duopoly assumption. With two firms, it is straight-

forward in the Edgeworth Cycle model that when one firm raises its price to the top, it is in the

best interest of the other to follow by increasing its price just below that of the first firm. This

is preferable to pricing at marginal cost or setting any intermediate price. However, when there

are three or more firms, and one firm raises its price to the top, is it still true that the other

firms necessarily follow? Or would they continue to compete for market share at the lower prices

instead? If the latter, it would remove the incentive for the first firm to raise prices to begin with,

and might prevent any cycle from occurring at all. And if that is true, the empirical cycles cannot

be Edgeworth Cycles. On the other hand, if Edgeworth Cycles can still exist with three or more

firms, what properties should we expect the cycles now to have? Do they still match the empirical

cycles?

With many authors now claiming to have found empirical examples of Edgeworth Cycles, there is

an urgent need to revisit the theory and extend it to include more of these real world complications.

Fluctuating marginal costs, markets with more than two firms, and mild amounts of differentiation,

for example, are all common in retail gasoline. If theoretical Edgeworth Cycles are not robust to

these extensions, it would call the results of these empirical papers into question. If Edgeworth

Cycles are robust to some extensions but not others, then it would then be useful to know what

matters, to help inform the search for cycles in new markets. We can ask some rudimentary

questions: In which markets is it most likely that researchers can observe cycles? When they are

observed, can we say anything about the level of competition in cycling markets relative to similar

noncycling ones? And finally, do their shapes adapt to environment? In other words, are the cycles

homogeneous objects or do their shape carry an additional competitive signature?

To answer these questions, I extend the theory of Edgeworth Cycles to include several key

complexities common in real world cycling markets. The first major departure from the Maskin

and Tirole model is the inclusion of fluctuating marginal costs. While this is done in large part for

technical reasons as explained in the next section, it is also of economic interest in its own right,

as fluctuating marginal costs are endemic in gasoline markets. Under the fluctuating marginal
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cost model, I revisit the standard Bertrand duopoly and capacity constrained versions of it. I also

consider a simple model of product differentiation and look at asymmetric equilibria in addition

to the standard symmetric ones. When I find cycles, I pay special attention to how each model’s

parameters affect their shape. The results support that Edgeworth Cycles are a relatively robust

construct under fluctuating marginal costs and across a spectrum of situations. Cost shocks in

particular do not have a destabilizing effect on the cycles. Cycles can be generated in homogeneous

goods markets, in markets with mild but not strong differentiation, and in markets with mild but

not strong capacity constraints. Demand levels, elasticities, and discount factors have little to do

with cycle existence but rather influence the shape of the cycles and in interesting ways. In empirical

practice, both existence and shape can give us an unique view into the nature of competition in

studied markets.

The second major departure is the study of a triopoly model, which yields one of the most

important sets of findings in the paper. First and foremost, cycles are not restricted to only duopoly

settings but are still very feasible under triopoly. But now important coordination challenges arise

that did not exist in the two firm model — delayed starts and false starts. Delayed starts occur when

competing firms do not immediately follow the price increase of the first firm, stranding the first

firm at the top of the cycle for multiple periods. False starts occur when the first firm abandons

its attempt to raise prices altogether, after waiting too long for others to follow it to the top of the

cycle. Delayed starts and false starts are an important part of the equilibrium cycle process and

have real consequences on consumer welfare. Since they make it more costly for a firm to be first to

raise its price, the bottom of the cycle becomes lower and firms stay there longer. Average prices

fall. While the negative correlation between prices and the number of firms is not surprising, the

mechanism by which this works is new and unique. The result gives support and interpretation to

researchers who have recently begun to find evidence of false starts in several cycling retail gasoline

markets in Canada (Atkinson (2006)) and Australia (Wang (2005c)).

In order to investigate many different scenarios, I employ a computational dynamic program-

ming algorithm to search for equilibria. As with all computational approaches to equilibrium

search, there are admittedly disadvantages relative to an analytical approach. For example, with

computational equilibria — even the very many I have here — one cannot construct formal sufficiency
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conditions or write down a complete characterization of all possible equilibria. This is beyond my

intended scope. The main goal of this paper is to see if Edgeworth Cycles can plausibly exist under

a large number of competitively different situations beyond the basic Bertrand duopoly, and to

examine their properties when they do. The computational approach gets a lot of mileage in this

regard. I identify a broad range of situations in which Edgeworth Cycles can thrive and cast light

on some surprising new cycling phenomena, which will be useful right away for informing empirical

research in the field. One of the most notable in this regard is the finding of delayed and false starts

in the triopoly model.

To date, cycles believed to be Edgeworth Cycles have been found in retail gasoline markets in

Canada, the United States, Australia, New Zealand, and several European countries, and also in

U.S.-based internet auction markets.3 Why they have not been detected elsewhere remains an open

question, which I address theoretically here. Given my findings, one might imagine that with new

technologies creating increasingly real-time markets (in electricity, long distance telephone, internet

shopping, etc.) where relatively homogenous products, frequent purchases, and low switching costs

are the norm, we may yet see increasing numbers of discoveries of Edgeworth-like cycles. New,

higher-frequency data in the hands of researchers will also make the naturally high-frequency cycles

easier to detect. This article is a framework to expand our understanding of where and how

Edgeworth Cycles can occur and how to interpret them.

The paper is organized as follows. Extensions of the duopoly model, including differentiated

goods and capacity constraints, are discussed in Section 2. The triopoly model and discussion of

its unique coordination problems appears in Section 3. All models in the paper include the feature

that marginal costs fluctuate. Section 4 concludes.

2 Duopoly under Fluctuating Costs

In their original paper, Maskin and Tirole (1988) work with a symmetric Bertrand duopoly, in which

homogeneous-goods firms set prices alternately. They restrict their attention to Markov strategies,

i.e. strategies that depend only on the payoff relevant state. Examining Markov strategies is useful

3See Feng & Zhang (2005) and Zhang (2006) find Edgeworth Cycles in internet auction markets, the first such
finding outside of retail gasoline. For Edgeworth Cycles in an experimental setting, see Kruse et al. (1994).
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in that it captures the more plausible, simpler strategies, and eliminates a multitude of complicated

and often unreasonable equilibria that would still be allowed under unrestricted supergames.4 I

will maintain the Markov assumption throughout the article. The equilibrium concept is that of

Markov Perfect Equilibrium (MPE), and is a refinement of Nash equilibrium.

Maskin and Tirole (1988) show in their model that two sets of MPE are possible — focal price

equilibria and “Edgeworth Cycle” equilibria. Focal price equilibria are characterized by constant

prices over time. Firms tacitly colluding and all charging the monopoly price in each period is

an example. Edgeworth Cycle equilibria, in contrast, take the form of an interesting and sharply

asymmetric price cycle that is repeated over and over. The mechanism of the cycle is as follows.

Starting from a high price, firms repeatedly undercut one another and steal the entire market from

its competitor (since goods are homogeneous). Once prices have fallen all the way to marginal cost,

undercutting ceases, and firms play a war of attrition with each firm mixing between raising price

back to the top of the cycle (“relenting”) and remaining at marginal cost. Each would prefer the

other to relent first, since the firm to relent second benefits most with higher priced sales in an

earlier period. When one firm relents back to the top of the cycle, the other immediately follows

but to a price just below that of the first firm, and a new round of undercutting begins.

I now depart from the Edgeworth Cycle duopoly framework of Maskin and Tirole (1988) by

adding fluctuating marginal costs. In this section, I reconsider the homogeneous goods case, and

then extend the model to incorporate differentiated goods and the presence of capacity constraints.5

Assume two infinitely-lived profit-maximizing firms compete in a homogeneous Bertrand pricing

game by setting prices in an alternating fashion — one firm sets its price in even periods and the

other in odd periods — and once set, the price for that firm is fixed for two periods. Therefore, if

firm 1 adjusts its price in period t, p1t = p1t+1 and p2t = p2t−1. Prices are chosen from a discrete price

grid. Marginal cost, ct, is also allowed to vary over time, and is chosen by nature from a discrete

4See Maskin & Tirole (2001) for a discussion of the advantages and limitations of working with Markov strategies.
5The concept of Edgeworth Cycles originally dates back to Edgeworth (1925) who considers two identically capacity

constrained firms. Edgeworth postulated that after undercutting brings firms close to their capacity constraints, one
could raise price and profitably serve the residual demand. Notably, Maskin and Tirole show that cycles can exist
under both capacity-constrained and unconstrained models.
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cost grid with support [c, c]. Each firm earns current period profits of

πit(p
1
t , p

2
t , ct) = Di(p1t , p

2
t ) ∗ (pit − ct) (1)

where Di is the standard Bertrand formulation.

The strategies of each firm are allowed to depend only on the payoff-relevant state in each period.

Therefore, a firm’s strategy depends only on the price set by the other firm in the previous period,

current demand, and current marginal cost which it learns prior to setting its price. The Markov

Perfect equilibrium strategies are given by R1, R2, where (p1t )
∗ = R1(p2t−1, ct), (p2t )

∗ = R2(p1t−1, ct)

and pjt−1is the price chosen by firm j is period t− 1 which remains in effect in period t.6

Let V 1(p2t−1) be the firm 1’s value function when firm 2 adjusted its price to p2t−1 in the previous

period, firm 1 adjusts its price in the current period, and the current marginal cost ct is not yet

known. Let W 1(p1s−1) be firm 1’s value function when it has set price p1s−1 in the previous period,

firm 2 is about to adjust its price, and the current cost is not yet known. V 1 andW 1 can be written

as

V 1(p2t−1) = E
c

(
max
pt

[
π1t (pt, p

2
t−1, ct) + δ1W

1(pt)
])

(2)

W 1(p1s−1) = E
c

(
E
ps

[
π1s(p

1
s−1, ps, cs) + δ1V

1(ps)
])

(3)

and similar equations are found for V 2 and W 2. The firm-specific discount factor is δi. The

inside expectation in W 1 is taken with respect to the distribution of R2 and both the outside

expectation in W 1 and the expectation in V 1 is taken with respect to the distribution of c.7

To choose the best response price, given the current rival price p2t−1 and current cost ct, firm 1

maximizes π1t (pt, p
2
t−1, ct) + δ1W

1(pt) (i.e. V 1 without the expectation.) Firm 2 acts in a similar

way.8 Note that the standard Maskin and Tirole (1988) model can be recovered from the current

6See Maskin & Tirole (2001) for general properties of MPEs (not simply with alternating moves games).
7This formulation implicitly assumes there is no persistence in c, a point to which I will return.
8Eckert (2004) uses a dynamic homogeneous goods model and marginal costs with a two-point support to examine

the stability of focal price equilibria.
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setup by setting δ1 = δ2, and ct = c for all t.9 Since marginal costs are constant and known in

Maskin and Tirole, the Ri does not depend on c and the expectations in V i and W i over c would

vanish in their model.

A significant departure of the model presented here is the inclusion of fluctuating marginal

costs. This is in part motivated by the degree of wholesale price volatility common to gasoline

markets, and my results will check if this has a destabilizing effect on the cycles. But there is

also an important technical reason for including fluctuating marginal costs. Because I wish to

explore many different competitive environments, I employ a computational dynamic programming

algorithm to solve for the value functions V i and W i and the best response functions Ri. This

would normally present a challenge because focal price and Edgeworth Cycle MPE involve mixed

strategies and a computational algorithm based on pure strategies will not converge. However,

the use of a simple stochastic marginal cost process simplifies the computation by ensuring a pure

strategy pricing equilibrium always exists.10

To get a rough sense for how this works, imagine in a constant cost world and in response to

some price, the equilibrium involves a firm randomizing between price pH with probability 1
2 and

pL with probability 1
2 . In the fluctuating cost world, the firm does not randomize but instead takes

a new draw ct from the marginal cost distribution in the current period. If that draw is above

the median, the firm in equilibrium will choose pH and if below, it will choose pL. Effectively, the

current draw of marginal cost gives the firm a single pure response. I use 2000 grid points in a

marginal cost band [c, c, ] = [0, 2], to replicate any choice probability to within 1
2 ∗

1
2000 = 0.00025

and avoid convergence problems. This does not mean, however, that my results replicate the

constant marginal cost case. On the contrary, marginal costs fluctuate within a sizeable band, are

payoff relevant, and have their own direct impact on own and competitor profits.11 As a result it

is not uncommon for firms to have two or three possible optimal responses which depend on its

cost draw. This is a departure from the constant cost model where mixing generally occurs at one

9Eckert (2003) performs an analytic extension of the constant cost model by allowing the firms to split the market
unevenly at equal prices. I performed simulations of these models as well and find Edgeworth Cycles with shapes
consistent with Eckert. They are not presented for brevity sake.
10The equilibrium need not be an Edgeworth Cycle equilibrium.
11True mixing probabilities keep the competitor indifferent across the firm’s choices. Competitors are not indifferent

here across the possible actions taken in response to payoff relevant cost shocks.
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place in the cycle and only between two prices.

In exchange for this computational accuracy, some simplification of the cost process is neces-

sary. For example, current period marginal cost is assumed independent of previous draws, the

distribution is assumed uniform and finally, marginal cost can change each period although any

given price changes every two. These simplifications are taken to avoid significant dimensionality

problems in the technical computation, as explained in the footnote.12

The system is converged when fixed point vectors V i and W i are found. At each iteration k,

I update all four value functions as follows. To update V 1 and W 2, I calculate the best response

of firm 1, (p1)∗ = R1(p2, c), to every possible prior period price p2 and cost realization c. I then

calculate the net present value of profits for each firm (given each p2, c, R1(p2, c), and V 2k−1(p
1) and

W 1
k−1(p

1) from the previous iteration). Next, for each p2, I calculate the expectation over c of each

firm’s profits. This expectation is the new V 1k (p2) and W 2
k (p2). I update V 2 and W 1 similarly.13

As mentioned, the computational approach cannot guarantee all possible equilibria will be

found. In the Maskin and Tirole model, multiple Edgeworth Cycle equilibria and multiple focal

price equilibria exist. Therefore I test a wide range of starting values in each scenario in search

of multiple equilibria. Interestingly, however, I routinely converge back to the same equilibrium

each time regardless of the starting values attempted, except as noted. In particular, I have not

replicated both an Edgeworth Cycle and focal price equilibria in the same scenario. Whenever both

Edgeworth Cycles and focal price equilibria might be expected (for example, with very thin cost

bands and assumptions close to Maskin and Tirole), all starting values still give the same equilibria —

that of Edgeworth Cycles. This suggests that given an initial disequilibrium situation, firms tend to

gravitate more easily to Edgeworth Cycles than to focal prices. Since the goal is to show Edgeworth

12In the current setup, V i and W i depend only on previous price and so are #p vectors, where #p is the number
of points on the price grid. Adding persistence in marginal costs — perhaps as a simply random walk process — means
that V i and W i must each contain #p ∗#c elements (and must converge elementwise), where #c is the number of
points on the cost grid. In examples that follow, #p is 20 but #c ∗#p is 40,000. Also, with any distribution other
than uniform, either a greater #c would be necessary to achieve the same 0.00025 standard error, or the cost grid
would have to be spaced unevenly with more points near the peak of the distribution. The choice of the specific cost
process, however, will not affect the qualitative results that follow.
13Pakes and McGuire (1994, 2001), Ericson and Pakes (1995), Pakes (2000) and others suggest techniques for

reducing computational burden such as using a polynomial approximation for the value function and making efficient
use of symmetry. Because of the discrete and jumpy nature of the best response functions I describe below (and
resulting “waviness” of the value function), I choose to use the precise, but slow, algorithm in the text. I use symmetry
between firms to reduce the burden where possible, but since most specifications are asymmetric in nature, this is of
limited value.
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Cycles can thrive under a variety of environments, the tendency for the computational method to

gravitate towards Edgeworth Cycles when there are multiple equilibria is not problematic. In fact,

the simulations are very successful in finding Edgeworth Cycles. For consistency, all reported results

use starting values for V i and W i that would be the outcome in a single period static game (i.e. if

discount factors were zero) except as noted.

2.1 Symmetric Duopoly Model

I begin with the symmetric homogeneous Bertrand duopoly model but with fluctuating marginal

costs. The simulations show cycles are easily generated when there are fluctuating costs under all

reasonable parameter values.

I fix a particular example for discussion now, and examine variation in models and parameter

values shortly. Assume a linear demand curve given by D(p) = a− bp, where a = 20 and b = 1.

Prices are chosen from a discrete price grid pi = {x}, x = 0..20. Marginal cost in each new period

is randomly drawn from a discrete uniform cost grid in the range ct = {x/1000}, x = 0..2000.

Also, set the discount factor δi = 0.95 for each firm. In the top panel of Figure 3, I report the

equilibrium best response functions Ri(pjt−1, ct) for this case, and in the bottom panel I report the

equilibrium price paths over 40 periods.14

––––––––– insert figure 3 about here ––––––––

Before interpreting results, it is a useful digression to explain how to quickly read the best

response figures. Consider firm 2’s best response function, depicted with dark circles in the figure.

A circle immediately below the 45◦ line represents an undercut of one notch on the price grid by

firm 2. A circle placed further below the 45◦ line represents a more aggressive undercut. Matching

firm 1’s price is represented by a circle directly on the 45◦ line and when firm 2 responds by raising

14These are best response functions and not best response correspondences because there is a unique best response
to each price conditional on the specific value of marginal cost. (Except for the zero probability event that the cost
draw is exactly such that a firm is indifferent between two price responses.) Because the price grid is discrete, the
displayed best response functions are also discrete. I have, however, connected the dots in the price path figures to
facilitate presentation.
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its price back to the top of the cycle, which I call “relenting”, we observe circles far above the line.

Had firm 2 wanted to respond by raising its price only slightly instead, which I call “stepping up”

(and not observed in this example), we would see a circle only slightly above the line. When firm 2

will respond with one of two or more actions (depending on realized marginal cost), multiple circles

appear on the same vertical line.15 Reading firm 1’s best response function is similar: undercuts

are represented by hollow squares to the left of the 45◦ line, relenting and stepping up are to the

right, and multiple squares on the same horizontal line represent multiple possible best responses,

depending on cost.

The figures clearly show cycles in equilibrium with changes in firms’ behavior along the path

of the cycle. First, notice that prices at the top of the cycle begin substantially above the static

monopoly price.16 Clearly a dominated strategy if this were a one-shot static game, during an

Edgeworth Cycle this is preferable and allows firms to spend more time near the peak of the profit

distribution, which is maximized at the monopoly price. The undercutting then proceeds in an

orderly fashion, one notch at a time, through the most profitable prices.

However, once far enough off the peak of the profit function, orderly price undercutting yields

to aggressive price cutting. One of the firms undercuts by three or four notches at once, quickly

pushing the cycle deep into the less profitable region. The benefit is that it puts pressure on its

competitor to accept the costly task of relenting in the following period.17 If the other firm does not

quickly relent, the first firm will either relent itself or switch to a passive strategy instead. In the

latter case, it matches price instead of undercutting, accepting a split of the market at unprofitable

prices, and passing the turn back to its opponent. Eventually, a high enough cost draw will cause

one of the firms to relent. The other follows immediately and undercutting recommences.

Relative to a repeated one-shot Bertrand game, the average market price consumers face is

relatively high. At 8.5, it is close to the average static monopoly price of 10.5 and well away from

15For readability, when there are two or more possible price responses depending on the realized value of the cost
draw, I do not report the exact probabilities (or scale the size of the symbols) in the graphs. It is always the case
that undercutting occurs at lower marginal costs than matching, and matching occurs at lower marginal costs than
relenting or stepping up.
16Define the static monopoly price as the average of the monopoly prices that would occur in one-shot games. In

this case, it is 10.5 (i.e. 10 with probability 0.5 and 11 with probability 0.5.)
17Although excluded from the diagram to reduce clutter, the probability of a firm relenting increases as the price

falls from 4 to 1, and is certain from a price of 0. (Since 0 is not a response to any price, though, it does not occur
on the equilibrium path.)
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the highest static competitive price of 2.

2.2 Elasticities and Discount Factors

I performed additional trials for robustness on linear demand curves D(p) = a − bp and allow

parameters to change. Cycles are easily generated for all tested cb < a < ∞ and −∞ < b <

0.18 This is not surprising because the gain to undercutting comes predominantly from stealing

the existing consumer base and not by creating new consumers. Consistent with Maskin and

Tirole, researchers cannot exclude Edgeworth Cycles on the basis of aggregate demand alone in the

fluctuating marginal cost case.

––––––––– insert figure 4 about here ––––––––

Aggregate elasticity does impact the shape of the cycle however. The best response functions

with relatively elastic demand curves show that firms are less aggressive in undercutting, more often

proceeding by one notch at a time into lower prices. This is because firms can serve a relatively

larger market at low prices. The best response functions and cycles for the relatively more elastic

case a = 15, b = 0.5 are shown in Figure 4 for comparison. With less elastic curves instead,

simulations show more aggressive undercutting and cycles that are relatively more rapid and less

asymmetric.19

For any given set of demand parameters, the simulations easily generate Edgeworth Cycles under

fluctuating costs for all tested pairs of discount factors δi ∈ (0, 1), whether equal or unequal.20 With

a wide enough cost band (to contain several points on the price grid), there is always a cost draw

low enough to make a undercut near c profitable, and a later cost draw high enough to ensure a

18For linear demand curves, a/b > c is required for demand to support a price above marginal cost. Eighty
combinations were tested with 0.03 < a < 60, 0.01 < b < 10.
19For comparisons, I used demand curves pivoted around a particular point (for these examples, (10,10)). I

also simulated parallel shifts in demand and pivots around the quantity intercept with descriptively similar results.
Pivoting around the price intercept yields a set of identical best response functions since the elasticity at a given
price is unchanged.
20I experimented with δi = {0.01, 0.05x, 0.99}, .x = 1..19. Even when δi = 0, Edgeworth Cycles is still one possible

type of equilibrium, since when prices are at marginal cost, a firm is indifferent across all p ≥ c. Any p > c will create
a cycle.
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relent.

Discount factors play an important role in shaping the cycle. The best response functions show

that with lower discount factors (more weight on current profit), the first undercut from the top

of the cycle is relatively closer to the static monopoly price. Undercutting proceeds more slowly

and matching is much more likely at low prices. The shape reflects this. The downward slope of

the cycle loses its concavity and becomes linear until, near the bottom, price matching adds some

convexity. Relative to higher discount factors, the cycles are shifted vertically downward, are longer

in duration, and are more asymmetric.21

For a concrete example, consider the case of δi = 0.5 (not shown) with demand parameters as

above. The first undercut is to 11 or 12, slightly above but relatively closer to the static monopoly

price. Undercutting proceeds by one notch at a time all the way down to a price of 2, when

matching during the war of attrition begins. Consumers are also better off: average price is 5.8

when δi = 0.5, 44% below the static monopoly price and 31% below the δi = 0.95 case.22

2.3 Asymmetric Strategies

Many theoretical expositions focus on symmetric equilibrium strategies. Clearly when firms are

meaningfully different — different levels of consumer loyalty, different locations, different capacity

constraints — equilibria will exist where firms do not follow identical strategies. But even if firms are

identical, asymmetric Edgeworth Cycle equilibria still exists, as I show here. Theory does not tell

us which equilibrium will be reached, but it is worth noting that symmetric equilibria tend to be

less stable. Small random perturbations in the symmetric equilibria that affect firms differentially

can create strategy differences that cause a move towards a stable but asymmetric equilibria.

––––––––– insert figure 5 about here ––––––––

To find asymmetric equilibria computationally, I make a small random perturbation in the

21It is interesting to note that while economists describe such firms (with low δ) as less patient, some non-economists
may view these firms as being more patient since they routinely wait out a war of attrition longer than high-δ firms.
22When δi = 0.99, average price rises to 9.2, 11% higher than the δi = 0.95 case.
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starting values in V i for one of the firms. The results of this experiment are shown in Figure 5 for

the example introduced above. Edgeworth Cycles still exist, but this simple change creates a cycle

that operates quite differently. The same firm — in this example, firm 1 — now relents first each

time. (Note the absence of a horizontal line of circles in the upper left.)23 It does this because in

this equilibrium it knows firm 2 will never relent first, and firm 2 never does because it knows firm

1 always will. As a result firm 2 plays an aggressive strategy at high and moderate prices — starting

with its first undercut to a price near the static monopoly price, rather than far above it. Since

firm 1 will surely be first to relent, firm 2 has less incentive to delay the next cycle trough into

the future. After a short range of one-notch undercutting, firm 2 aggressively undercuts to a low

price to induce a quick relent. If firm 1 does not immediately relent, firm 2 switches to a passive

strategy, either matching price or instead simply “stepping up” its price just above that of firm 1

(as shown by circles just above the 45◦ line). Though not observed on the equilibrium path, the

step up strategy is important for firm 2 to avoid relenting itself. We will see this overall pattern of

behavior emerge whenever we look at cases involving meaningfully different firms.

The behavior gives a different shape to cycle. Compared to its symmetric counterpart in

Figure 3, the resulting cycle in the asymmetric case is more rapid, smaller in amplitude, and

less asymmetric. Similar Edgeworth Cycle equilibria are easily generated for all tested parameter

values cb < a < ∞, −∞ < b < 0, and 0 < δi = δj < 1. Comparisons across symmetric and

asymmetric equilibria hold in each case.

Given prices are strategic complements, there is a profit advantage to the follower. Firm 2

enjoys profits 50% higher than firm 1, and 24% higher than in the symmetric case. Firm 1’s profits

fall by 17%. Consumers are also better off because of the aggressive play of firm 2, with an average

price of 7.7, or 10% lower than in the symmetric case.

2.4 Capacity Constraints

Many industries, including gasoline markets, have capacity constraints on at least some firms. This

can diminish the firm’s incentive to undercut if it can no longer serve the entire market at the new

lower price. Moreover, residual demand is left over when an opponent’s constraint binds so a firm

23There is another mirror-image equilibria with firm 1 and firm 2 reversed.
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may prefer a relatively high price for this reason. In this section I add capacity constraints to the

fluctuating costs model. Demand is recast as

Di(p1t , p
2
t ) =






min{Ki,D(pit)} if pit < p
j
t

min{Ki,D(pit)−min[Kj, 12D(pjt)]} if pit = pjt

min{Ki,max[0, D(pit)−min[Kj, D(pjt)]]} pit > p
j
t

(4)

for i �= j, where Ki is the maximum output, or capacity, of firm i. Capacities are exogenously

given.24 Marginal cost is assumed to be ct — which varies — for all units up to Ki and is equal

to infinity thereafter. To fix an example for discussion, I assume δi = 0.95, a = 20 and b = 1 as

earlier, and perform trials using all meaningful integer values of Ki.

Symmetric Capacity Constraints

First consider the case of symmetric capacities, K1 = K2. Intuition suggests that when capacity

constraints are very loose, Edgeworth Cycles should exist as they did in the unconstrained version

and at some point, when they are very tight, they should not. Consistent with this intuition, the

simulations easily generate Edgeworth Cycles for this example for all Ki ≥ 10. But for Ki < 10,

only focal price equilibria appear. I find the same patterns described below for all cb < a < ∞,

−∞ < b < 0, and 0 < δi = δj < 1 tested, with obvious changes in the range and threshold value of

K.

––––––––– insert figure 6 about here ––––––––

––––––––– insert figure 7 about here ––––––––

24Some models of endogeneous capacity choice in other contexts include Kreps and Scheinkman (1983), Kovenock
and Roy (1998), and Reynolds and Wilson (2000).
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What is interesting is how changes in capacities affect the shape of the cycle. Simulations show

that Ki falls toward 10, the undercutting phase becomes more linear and longer. Edgeworth Cycles

become less rapid and more asymmetric. The reason is that when a firm’s capacity-constrained

opponent undercuts the firm in the following period, it leaves residual demand for the firm. Having

made a smaller undercut two periods earlier allows the firm to serve that residual demand at a

higher price. As a result, multiple notch undercuts are increasingly rare and the undercutting phase

slows. In Figure 6, I show the example of Ki = 10. The sales-weighted average price in this case

is 8.27, only 3% below its unconstrained counterpart. Smoother undercutting tends to lower the

average, but the fact that firms no longer set very low prices on the equilibrium path and the fact

that the higher priced firm still makes sales tends to raise it.

Below Ki = 10, the best response functions reveal focal price equilibria only. The example

of Ki = 9 is shown in Figure 7. In the example, the focal price is pf = 7 and firms carry 28%

excess capacity.25 Excess capacity is necessary to credibly threaten to punish defections from the

focal price. This appears as a square box in the best response functions graph. Firms threaten to

retaliate by undercutting the undercutter and then engaging in a war of attrition until some firm

restores the focal price.

As Ki decreases below 9, the simulations show two opposing effects on the focal price. First, it

becomes more difficult to punish defections from a given focal price since firms have less capacity.

This works toward a lower focal price and firms producing closer to capacity. Second, when ca-

pacities are tighter, the market-clearing price that would occur with full capacity production rises.

The former effect dominates with high Ki and the latter dominates at lower Ki. In the example

shown, the focal price reaches its minimum value of 6 at Ki = 8. Excess capacity is 13%. By the

time Ki ≤ 5, excess capacity is zero and the now full capacity market clearing price continues to

rise.

Asymmetric Capacity Constraints

Now consider the case when only one firm (firm 2) is constrained. This is motivated by the fact

25This is consistent with Maskin & Tirole (1988) who find excess capacity is built to support focal prices in the
constant costs case. The result is also similar to Benoit & Krishna (1987) and Davidson & Denekere (1990) who
show that excess capacities can support higher collusive prices in pricing supergames. See Brock & Scheinkman
(1985), Rotemberg & Saloner (1986), Haltiwanger & Harrington (1991) and Bagwell & Staiger (1996) for discussions
of maximum sustainable cartel prices in various contexts.
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that major gasoline retailers have more overall capacity than do independents. I find that for all

integer values of K2 > 0, I can easily generate Edgeworth Cycles. Results hold for all cb < a <∞,

−∞ < b < 0, and 0 < δi = δj < 1 tested with obvious changes in the range of K. There are

interesting changes in the shape of the cycle as capacity constraints tighten, however. In fact, if

tight enough, one might overlook the cycle entirely.

––––––––– insert figure 8 about here ––––––––

The simulations show that with firm 2 is constrained, it is firm 1 that relents first on each

cycle.26 It is not as costly for firm 1 to relent because it has more capacity to serve the residual

demand at high prices.

For relatively weak constraints, the best response function is similar to that in Figure 5. But

as constraints on firm 2 tighten, the cycle becomes more rapid, smaller in amplitude, and less

asymmetric. Firm 2 is increasingly more aggressive in undercutting as firm 1 is increasingly likely

to relent from moderate prices. I report the case of K2 = 7 in Figure 8, showing the rapid, low

amplitude cycle. By the time K2 = 2, even a careful observer could easily overlook them. Firm 1

always sets price at 9 or 10 depending on cost, and firm 2 always sets a price of 7. But these are

not different “focal” prices — it is a “Hyper-Edgeworth Cycle”. Firm 2 could have sold to capacity

by matching, but then firm 1 would have responded with an undercut and left zero sales for firm

2. Hence, firm 2 undercuts by just enough to force firm 1 to relent on every turn. The hypercycle

can be difficult to detect. One indication might be that the two firms charge substantially different

prices in equilibrium for what are actually homogeneous goods.

Capacity constraints have expected effects on average sales-weighted prices — prices edge up

with lower K2. At K2 = 7, it is 7.3 but then rises to 9.8 when K2 = 3 and ultimately 10.5 (the

static monopoly price) when K2 = 0.

26This agrees with the Deneckere & Kovenock (1992) result in their constant-cost, two-period model of price
competition, where the large firm endogeneously becomes the price leader.
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2.5 Differentiated Products

Most industries are characterized by at least some degree of product differentiation. With differ-

entiation, the incentive to undercut is diminished since some consumers will remain loyal to the

opponent’s product. The simulations in this section confirm this intuition. I can easily generate

Edgeworth Cycles when differentiation is sufficiently weak but not above a certain threshold. In

the simple Hotelling model I use to illustrate below, Edgeworth Cycles are only found when firm’s

loyal consumers represent less than 20% of their consumer base.

Assume consumer tastes are uniformly distributed over a univariate product space that has

support [0,1]. Firm 1’s product is located at point 0 and firm 2’s product is at point 1. Each

consumer h has unit demand and receives utility in time t of vi − pit − τz
ih
t if she purchases from

firm i, where vi is the intrinsic value of firm i’s product, pi the price charged by firm i, and zih

is her distance in product space to her most preferred product. Let τ is the disutility per unit of

distance between the preferred and the purchased product.

If the prices are low enough that all consumers make a purchase, which occurs when (v1+v2)−

(p1t + p2t ) ≥ τ , the market share of firm i is given by

sit(p
1
t , p

2
t ) =






1
2 + (vi−vj)

2τ −
(pit−p

j
t )

2τ if
∣∣∣(vi − pit)− (vj − pjt )

∣∣∣ ≤ τ

1 if (vi − pit)− (vj − pjt) > τ

0 if (vj − pjt )− (vi − pit) > τ

i �= j (5)

If prices are high enough that not all consumers are served at those prices, then firm i’s share is

sit(p
i
t) =

vi − pit
τ

(6)

Letting H be the total number of consumers in each period, current period profits to firm i is

πit(p
1
t , p

2
t , ct) = H ∗ sit(p

1
t , p

2
t ) ∗ (pit − ct) (7)

which is substituted into the equations for V i and W i given above. By construction in this model,

aggregate elasticity is zero while all consumers are served, and −2
t

when not all served.
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To fix an example for discussion, assume v1 = v2 = 10, a price grid of pi = {x}, x = 0..vi =

1..10, the marginal cost grid as before, and δi = 0.95. Consider τ ∈ [1,∞).27 Note that when τ < 1

a one-notch undercut steals the entire market so that this case is equivalent to a homogeneous goods

Hotelling model. For comparison sake, firms in the homogeneous goods version of the Hotelling

model (not shown) undercut by one notch at a time through most prices, by two in several, and

match at very low prices.

––––––––– insert figure 9 about here ––––––––

––––––––– insert figure 10 about here ––––––––

When τ > 1, the market is meaningfully differentiated in that not all consumers will switch in

response to a minimum undercut. The case of τ = 1.1 is illustrated in Figure 9. An undercut of one

notch steals an additional 45%, of the market in the case, leaving the other firm with 5%.28 The

figure shows a clear Edgeworth Cycle equilibrium. Average sales weighted price is 5.2, well below

the static monopoly price of pm(v, τ) = v − τ
2 = 9.45, but above the average static competitive

price of 2.1. Simulations easily generate Edgeworth Cycles for all values of τ ∈ [1, 1.25).

With enough differentiation (τ ≥ 1.25), however, the simulations can no longer generate Edge-

worth Cycles but only focal prices in equilibrium. The case of τ = 1.25, when a one-notch undercut

steals an additional 40% of the market, leaving the firm with 20% of its original base, is shown

in Figure 10. The focal price is 7 and firms stand ready to punish the defection with a further

undercut.

As τ grows above 1.25, there are two opposing effects on the equilibrium focal price. First, it

becomes more costly to punish defections from a given focal price since a greater undercut would be

needed to impact market share strongly. This works to reduce the sustainable focal price. However,

27Trials use τ = {1 + 0.05x, 2 + x}, x = 0..10.
28This best response function diagram is identical to the previous τ ≤ 1 case. Small differences in the choice

probabilities still exist.
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consumers are willing to pay a higher price since products are more differentiated. The former effect

dominates with lower τ and the latter dominates at higher τ . For example, firms can no longer

credibly threaten to respond to an undercut with another undercut (only to match) when τ ≥ 2

and the focal price falls to 5. It then gradually rises to 7 by the time τ = 6.29 Above τ = 6, firms

compete against the no purchase option rather than each other and prices gradually fall again.

With τ ≥ 9, firms do not serve the middle consumers and set monopoly prices of 5 or 6 (depending

on cost) thereafter.30

Additional simulations find the same pattern of results for all symmetric vi and δi.

Differences in real or perceived differentiation provide a strong possible explanation for why

cycles exist in some retail gasoline markets but are absent in others. Barron et al. (forthcoming)

recently estimated demand elasticities in the Los Angeles, San Diego, and San Francisco retail

gasoline markets, where cycles currently do not exist, and report a median firm-level own price

elasticity of -2.1. In contrast, when Wang (2005b) examined elasticities for the city of Perth,

Australia, where strong cycles do exist, he found a median firm-level own price elasticity of -7.8.

While the gain to undercutting in the California markets would be relatively small, even small

undercuts in the Perth market would be very effective in stealing market share.

3 Bertrand Triopoly under Fluctuating Costs

Earlier studies have focused on the Bertrand duopoly model for its analytical tractability. But a

highly relevant question for researchers studying empirical cycles in the field is: Can Edgeworth

Cycles exist when there are more than two firms? If they cannot, the empirical cycles found in many

retail gasoline markets and in internet auctions cannot be Edgeworth Cycles. If they can exist, it

is important to understand what they look like with more than two firms and how they differ from

the Maskin and Tirole standard. Are they consistent with what researchers find? In this section,

I break from earlier work by examining a Bertrand triopoly, while maintaining the assumption of

29At τ = 2, a one-notch undercut steals an additional 25% of the market. At τ = 6, it steals only 8%.
30Recall that when all consumers are served, the monopoly price is pm = v − t

2
and falls with τ . When not all

consumers are served, which requires τ > v − c, the static monopoly price is pm = (v+c)
2

and is independent of τ .
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fluctuating marginal costs.31

It is clear that when one firm relents in a duopoly setting, the best response for the other firm

is to immediately follow, starting the next cycle. But this is not at all obvious when there are more

than two firms, since all but one are still competing with each other near the cycle bottom. If they

do not follow, the first firm has no incentive to relent in the first place and it is possible that cycles

may never occur. This is a common criticism of the empirical literature on Edgeworth Cycles.

The first major result of this section is that Edgeworth Cycles can exist quite readily in a

Bertrand triopoly. This finding is robust to a wide range of parameter values and gives support to

empirical researchers who claim to have found Edgeworth Cycles in the field. However, the second

major result is that important coordination challenges now arise that did not exist in the two firm

model. There are delayed starts and false starts. Delayed starts occur when competing firms do

not immediately follow the price increase of the first firm, stranding the first firm at the top of

the cycle for multiple periods. False starts occur when the first firm abandons its attempt to raise

prices altogether, after waiting too long for others to follow it to the top of the cycle. Delayed starts

and false starts are an important part of the equilibrium cycle process and have real consequences

on consumer welfare, as discussed below.

In the three firm game, each firm can adjust its price every third period and its price is fixed

for the following two. Firm 1 adjusts its price in period t, firm 2 in t+ 1, and firm 3 in t+ 2 before

returning to firm 1 again. The value functions for firm 1 are:

V 1(p2t−2, p
3
t−1) = E

c

(
max
pt

[
π1t (pt, p

2
t−2, p

3
t−1, ct) + δ1W

1(p3t−1, pt)
])

(8)

W 1(p3s−2, p
1
s−1) = E

c

(
E
ps

[
π1s(p

1
s−1, ps, p

3
s−2, cs) + δ1U

1(p1s−1, ps)
])

(9)

U1(p1r−2, p
2
r−1) = E

c

(
E
pr

[
π1r(p

1
r−2, p

2
r−1, pr, cr) + δ1V

1(p2r−1, pr)
])

(10)

The value function V 1(p2t−2, p
3
t−1) is the expected future profits of firm 1 at a time t when it is firm

1’s turn to adjust its price, given that firm 2 set price p2t−2 two periods before (p2t−2 = p2t−1 = p2t ),

firm 3 set price p3t−1 in the previous period (p3t−1 = p3t = p3t+1), and ct is not yet known. Similarly,

31Computational demands preclude models involving more than three firms due to the higher dimensionality of
the best response function. However, it is reasonable that findings of the triopoly model will carry forward to models
involving a moderate number of firms greater than three.
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the value function W 1(p3s−2, p
1
s−1) is firm 1’s expected future profits at a time s when it is firm 2’s

turn to adjust its price and U1(p1r−2, p
2
r−1) is its expected future profits at time r when it is firm

3’s turn to adjust price. V 2, W 2, U2, V 3, W 3, and U3 are similarly defined.

The per period profit function is the standard Bertrand formulation. The lowest priced firm

serves the entire market, or if two or more firms have the lowest price, they split the market in

halves or thirds accordingly. Again, to fix an example for discussion, let D(p) = a− bp, a = 20,and

b = 1. Because of the additional computational demands of the three firms model, I allow for 200

points on the cost grid, ct = {x/100}, x = 1..200.32

If we believe that the interval of time between firm i’s moves should not change regardless of

how many firms there are, then firms should care about its profits three periods hence in the three

firm model as it would two periods hence in the two firm model. To adjust for this, I use a discount

factor of δ1 = δ2 = δ3 = 0.967 in the base case.33 If instead we believe that the time interval

between consecutive price changes by different firms should not change, δi = 0.95 would again be

used. Results are very similar between the two.

3.1 Cycles in Triopoly

––––––––– insert figure 11 about here ––––––––

The simulations clearly generate Edgeworth Cycles as an equilibrium in triopoly. An example

of the firms’ price paths are given in the top panel of Figure 11. The best response functions are

multivariate and not shown. Simulations converge to Edgeworth Cycles across all tested parameters

cb < a <∞ and −∞ < b < 0.

In the triopoly example presented, the last firm to raise its price undercuts the previous two to

a price of 14 and captures the market. The undercut is to a price substantially greater than the

static monopoly price (of 10 to 11). From there, the active firm undercuts the lowest priced firm

by one notch on the grid through high and medium prices. Once the minimum price of the other

two reaches 6, a firm may undercut by one notch as usual if cost is high, or aggressively undercut

32Choice probabilities can be replicated to within 0.0025.
330.9673 ∼= 0.952
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by several notches if the cost draw is low. The aggressive play pressures opponents into relenting

earlier. At low prices, the active firm — if it does not relent — responds either by undercutting one

notch or matching the lowest price. Eventually, one firm raises its price in an attempt to lead all

prices back to the top of the cycle.

3.2 Delayed and False Starts

I say “attempt” because immediate following by the other two firms is no longer guaranteed as it

was in the duopoly case. Instead, there can be “delayed starts” in cycle resetting, and in some

instances “false starts.”

A delayed start occurs when a firm must wait more than one turn (three periods) for others

to follow it to the top of the cycle. The top panel of Figure 11 shows an example of a delayed

start around the third peak. It is easily identified by an extended flat line at the top of the cycle.

After a high cost draw and facing low opponent prices, firm 2 is the first to relent to the top. But

with a low cost draw in the next period, firm 3 finds it more profitable to undercut further rather

than follow firm 2. The result is that firm 2 sits at the top of the cycle and makes no sales for two

consecutive turns (six periods in all) instead of the usual one. Longer delays can also occur.

A false start occurs when a firm abandons its effort to reset prices higher altogether and returns

immediately to the bottom with the other firms. Two examples of false starts are shown in the

bottom panel of Figure 11. They take on the appearance of double peaks along the price path —

the first and third main peaks show false starts. (The reader will note the second peak is another

example of a delayed start.)

Consider the first false start in the figure. In this case, firm 2 relents first after facing low

opponent prices and suffering a very high cost draw. Unfortunately for firm 2, firm 3 and then firm

1 receive favorably low cost draws in the following two periods and — rather than follow — continue

to undercut each other. Had its next cost draw been high, firm 2 would have remained at the top

for another turn, and we would observe a delayed start. In this example, however, its receives a

cost draw low enough that it is more profitable to abandon its position at the top of the cycle

and match firm 1’s price at the bottom. This action delays the resetting of the cycle but greatly

increases the probability (up from zero) that the others will relent first.
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In simulations, false starts occurred in 6% of all attempted relents (i.e. all peaks) and delayed

starts occurred in an additional 13%.

Average prices fall with more firms, as one might expect, but the mechanism by which this

works is interesting. Note that peak prices and trough prices have not changed from the duopoly

case. And firms still capture the entire market with a one-notch undercut. The key difference is

coordination problems. Delayed starts and false starts make it more challenging and costly to be

first to reset the cycle. As a result, firms hesitate in relenting and market prices stay near the band

of marginal costs longer. This is easily seen in a comparison of Figures 3 and 11. The average

market price on the equilibrium path is now 7.2, 16% lower than in the two firm case.

When δi = 0.63 instead, coordination problems worsen.34 Firms undercut by one notch through

even lower prices and extended matching at prices of 1 and 2 are commonplace. False starts and

delayed starts are also more common, and the delays are longer. Average market price is lower still

at 5.51.

I can also generate cycles in triopoly under mild amounts of differentiation and with relatively

weak capacity constraints, as was true in the duopoly case. The qualitative results from the duopoly

case carry over.35

In summary, I find Edgeworth Cycles are robust to the inclusion of more than two firms. How-

ever, in triopoly, the cycle is a bit more fragile. Coordination problems, in the form of delayed starts

and false starts, can occur. These make relenting more difficult for firms but benefit consumers

through lower average prices.

Notably, the findings of this section lend further support to researchers who claim to have

observed Edgeworth Cycles in retail gasoline markets. First, it shows that retail gasoline markets

need not be duopolies in order to sustain Edgeworth Cycles. Second, it points out that tell-tale

patterns — in the form of delayed starts and false starts — can appear along the path of the cycle.

These can be difficult to explain outside the Edgeworth Cycle model.36 And recent empirical

evidence in Canada (Atkinson (2006)) and Australia (Wang (2005b)) now show that these patterns

34Comparable to the δi = 0.5 two firm case, as (0.63)3 = (0.5)2.
35Although computationally infeasible currently, it would be interesting to model cycles in a market with many

weakly spatially differentiated retail outlets under a variety of ownership patterns, while allowing for capacity con-
straints and both varying costs and demands. These features all occur simultaneously in retail gasoline markets.
36Noel (2007a, 2007b) lists and rules out a number of alternate hypotheses of the cycles.
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are in fact occurring in numerous retail gasoline markets. This suggests that the empirical prices

cycles are indeed being driven by an Edgeworth Cycle process.

4 Conclusion

This article was motivated by the discovery of apparent Edgeworth Cycles in retail gasoline markets

in the U.S., Canada, New Zealand, Australia, and in Europe, and a desire to examine several key

gaps between the theory and real world experience. In this article, I employ a computational

approach to search for Edgeworth Cycles under a wide assortment of competitive models. In a

framework that allows for fluctuating marginal costs, I show that Edgeworth Cycles can exist in

many scenarios beyond the homogeneous Bertrand duopoly. They can exist in differentiated goods

markets when the differentiation is not too strong and in capacity constrained markets provided

symmetric constraints are not too tight. They exist under a wide range of market elasticities and

discount factors. A key finding is that Edgeworth Cycles can thrive in triopoly markets. In triopoly,

however, firms face new coordination challenges — delayed starts and false starts — that do not occur

in the two firm model. These have recently been reported as real empirical phenomena. I also find

that the shape of the cycles is impacted by the aggressiveness of the firms and this varies across

competitive situations in informative ways.

The article takes an important step to understanding the range of environments conducive to

Edgeworth Cycle activity. Edgeworth Cycles are robust to many scenarios, but the ability for firms

to steal large numbers of consumers with small price changes remains central.

So why do we not see Edgeworth Cycles in even more types of markets — both inside and

outside of retail gasoline? It is interesting that in most cases where cycles are newly found, it is

because finer and newly available data reveals previously hidden cycles, rather than because cycles

are newly formed. In markets where we are sure Edgeworth Cycles do not currently occur, it is an

open question which factor most inhibits them. As discussed in Section 2, differentiation is likely

an important contributing factor. This can take the form of traditional product differentiation (real

or perceived), or work through search costs and benefits. With higher search costs, consumers are

less likely to search and even less likely for products purchased infrequently or that account for a
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relatively small percentage of expenditures. Gasoline retailing might give the closest example to

the opposite — relatively homogeneous products, low search costs, a high percentage of expenditures

and frequent purchases. Market structure may also be an important factor in inhibiting cycles in

many industries, as the triopoly model of Section 3 shows coordination in raising prices becomes

an important problem. With many firms in an industry, it is not unreasonable that the free rider

problem may become severe enough that, in practice, firms choose not to attempt price increases

at all. For example, in many gasoline markets in the U.S., price control is relatively more likely in

the hands of individual station dealers than integrated refiner-retailers, relative to other countries,

and cycles would be more difficult to generate. Finally, I note that retail gasoline markets are spot

markets, but in other industries where pricing schemes like contract pricing or multi-part tariff

pricing — which can reduce switching costs — are standard, cycles may be more difficult to sustain.

Looking toward the future, however, it is not unreasonable to think we may observe Edgeworth

Cycles in even more types of markets outside retail gasoline. New technologies continue to create

increasingly homogeneous retail markets (in electricity, long distance telephone, internet shopping,

etc.) where relatively homogenous products, frequent purchases, and low switching costs are the

norm. Assuming we have data sufficiently fine to reveal high frequency price changes, these kinds

of markets would be natural places to find the next new examples of real world Edgeworth Cycles.
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Figure 1. Retail Prices (Major Firm, Independent Firm) and Rack Price 

 

 
Figure 2.Theoretical Edgeworth Cycle 



 

 
Figure 3. Symmetric Duopoly Model 



 
Figure 4. Symmetric Duopoly Model, Elastic Demand 

 



 
Figure 5. Asymmetric Duopoly Model 

 



 
Figure 6. Symmetric Capacity Constraint Model, Ki = 10 

 
 
 



 
 

 
Figure 7. Symmetric Capacity Constraint Model, Ki = 9 

 



 
Figure 8. Asymmetric Capacity Constraint Model, K2 = 7 

 



 
Figure 9. Differentiated Products Model, t = 1.1 

 



 
Figure 10. Differentiated Products Model, t = 1.25 

 



 
Figure 11. Triopoly Model 

 
 


